我们制定了良好的连续时间生成流量,用于学习通过F-差异的近端正规化在低维歧管上支持的分布。wasserstein-1近端运算符调节f- ddiverences可以比较单数分布。同时,Wasserstein-2近端运算符通过添加最佳运输成本(即动能惩罚)来使生成流的路径正规化。通过均值野外游戏理论,我们表明这两个接近物的组合对于配制良好的生成流量至关重要。可以通过平均场游戏(MFG)的最佳条件,汉密尔顿 - 雅各布(HJ)的系统以及向前连续性偏微分方程(PDE)的最佳条件进行分析,其解决方案表征了最佳生成流。对于在低维流形的学习分布中,MFG理论表明,Wasserstein-1近端解决了HJ终端状况,而Wasserstein-2近端是针对HJ动力学的,这既是相应地向后的PDE系统,都可以很好地置于范围内,并且是一个独特的范围。这意味着相应的生成流也是唯一的,因此即使在学习在低维流形的高维分布方面,也可以以强大的方式学习。通过对持续时间流的对抗训练来学习生成流,这绕开了对反向模拟的需求。我们证明了我们的方法生成高维图像的功效,而无需诉诸自动编码器或专业体系结构。
主要关键词