p = .16, 部分 η² = .07) 或 Hand ( F (1,26) = .04, p = .85, 部分 η² = .001) 对参与者的 416
摘要 — 人形机器人的远程操作可以将人类的认知技能和领域专业知识与人形机器人的物理能力相结合。人形机器人的操作多功能性使其成为在远程环境中进行远程操作时广泛应用的理想平台。然而,人形机器人的复杂性给远程操作带来了挑战,特别是在通信有限的非结构化动态环境中。在过去的几十年里,这一领域取得了许多进展,但仍然缺乏全面的概述。本综述论文对人形机器人远程操作进行了广泛的概述,介绍了远程操作系统的总体架构并分析了不同的组件。我们还讨论了该主题的不同方面,包括技术和方法的进步,以及潜在的应用。该论文的网络版本可在 https://humanoid-teleoperation.github.io/ 找到。
设计机器人个性是一项多方面的挑战。每个与人类互动的机器人都是一个独立的物理存在,可能需要自己的个性。因此,机器人个性工程师面临的问题与人格心理学家的问题相反:机器人个性工程师需要将一批相同的机器人制造成个体个性,而不是对已经存在的个体个性进行全面而简约的描述。到目前为止,机器人个性研究在展示机器人个性的积极影响方面卓有成效,但在如何大规模设计机器人个性方面尚无进展。为了为大规模生产的机器人设计机器人个性,我们需要一个生成性个性模型,该模型具有将机器人的个体特征编码为个性特质的结构,并生成具有反映这些特征的个体间和个体内差异的行为。我们提出了一种由目标塑造的生成性人格模型,作为我们一直致力于的机器人人格人工智能的一部分,并且我们进行了测试,以调查当该模型用于通过人形机器人头部的非语言行为表达人格时,它实际上可以支持多少个个体人格。
随着人工智能 (AI) 拟人化的人形机器人技术迅速发展,推出了更多像人类一样可以交流、互动和工作的自动化机器人,我们开始期待在不久的将来与人形人工智能机器人 (HAIR) 进行主动互动。除了 HAIR 技术的发展之外,COVID-19 疫情引发了我们对使用医疗保健机器人的兴趣,这种机器人具有许多实质性优势,可以克服人类在面对强传染性 COVID-19 病毒时的关键弱点。认识到 HAIR 的主动应用的巨大潜力,本文探讨了在医疗保健和患者服务中实施 HAIR 的可行方法,并提出了在医疗机构中战略性地开发和传播自主 HAIR 的建议。在讨论将 HAIR 融入医疗保健的同时,本文指出了在医疗保健服务中实施 HAIR 应解决的一些重要的伦理问题。
摘要 — 双边遥控操作为人形机器人提供了人类的规划智能,同时使人类能够感受到机器人的感受。它有可能将具有物理能力的人形机器人转变为动态智能的机器人。然而,由于涉及复杂的动力学,动态双边运动遥控操作仍然是一个挑战。这项工作介绍了我们通过身体倾斜的轮式人形机器人运动遥控概念应对这一挑战的初步步骤。具体来说,我们开发了一种具有力反馈能力的全身人机界面 (HMI),并设计了一个力反馈映射和两个遥控映射,将人体倾斜映射到机器人的速度或加速度。我们比较了这两种映射,并通过实验研究了力反馈的效果,其中七个人类受试者用 HMI 遥控一个模拟机器人执行动态目标跟踪任务。实验结果表明,所有受试者在练习后都完成了两种映射的任务,力反馈提高了他们的表现。然而,受试者表现出两种不同的远程操作风格,它们从力反馈中获益的方式也不同。此外,力反馈影响了受试者对远程操作映射的偏好,尽管大多数受试者在速度映射方面表现更好。
摘要 — 双边遥控操作为人形机器人提供了人类的规划智能,同时使人类能够感受到机器人的感受。它有可能将具有物理能力的人形机器人转变为动态智能的机器人。然而,由于涉及复杂的动力学,动态双边运动遥控操作仍然是一个挑战。这项工作介绍了我们通过身体倾斜的轮式人形机器人运动遥控概念应对这一挑战的初步步骤。具体来说,我们开发了一种具有力反馈能力的全身人机界面 (HMI),并设计了一个力反馈映射和两个遥控映射,将人体倾斜映射到机器人的速度或加速度。我们比较了这两种映射,并通过实验研究了力反馈的效果,其中七个人类受试者用 HMI 遥控一个模拟机器人执行动态目标跟踪任务。实验结果表明,所有受试者在练习后都完成了两种映射的任务,力反馈提高了他们的表现。然而,受试者表现出两种不同的远程操作风格,它们从力反馈中获益的方式也不同。此外,力反馈影响了受试者对远程操作映射的偏好,尽管大多数受试者在速度映射方面表现更好。
艾伦·图灵开发了图灵测试,作为一种方法来确定人工智能 (AI) 是否能够通过以 30% 以上的置信度回答问题来欺骗人类询问者相信它具有感知能力。然而,图灵测试关注的是自然语言处理 (NLP),而忽略了外观、交流和运动的重要性。本文的核心理论命题:“机器可以模仿人类吗?”既涉及功能性,也涉及物质性。许多学者认为,创造一个在感知上与人类无法区分的逼真的人形机器人 (RHR) 是人类技术能力的顶峰。然而,目前还没有全面的开发框架供工程师实现更高模式的人类模仿,而且目前的评估方法还不够细致,无法检测恐怖谷 (UV) 效应的因果影响。多模态图灵测试 (MTT) 提供了这样的方法,并为在 RHR 中创建更高水平的人类相似性以增强人机交互 (HRI) 奠定了基础
摘要:具有具身人工智能 (EAI) 的逼真人形机器人 (RHR) 在社会中具有广泛的应用,因为人脸是最自然的交流界面,人体是穿越地球人造区域的最有效形式。因此,开发具有高度人性化的 RHR 为人类提供了一个栩栩如生的容器,使人类能够以任何其他形式的非生物人类模拟无法超越的方式与技术进行物理和自然的交互。本研究概述了一项人机交互 (HRI) 实验,该实验采用了两个具有对比外观和个性的自动化 RHR。本研究中使用的选择性样本组由 20 个人组成,按年龄和性别分类以进行多样化的统计分析。皮肤电反应、面部表情分析和人工智能分析允许对生物特征和人工智能数据与参与者证词进行交叉分析,以具体化结果。这项研究的结论是,年轻的测试对象更喜欢外表年轻的 RHR 的 HRI,而年龄较大的测试对象更喜欢外表年长的 RHR。此外,女性测试组更喜欢外表年轻的 RHR 的 HRI,而男性测试对象更喜欢外表年长的 RHR。这项研究对于为具有 EAI 的 RHR 的外表和个性建模很有用,这些 RHR 适合特定的工作,例如照顾老人和为年轻、孤立和弱势群体提供社交陪伴。
摘要:脑机接口 (BCI) 是一种通信机制,利用脑信号控制外部设备。此类信号的产生有时与神经系统无关,例如被动 BCI。这对患有严重运动障碍的人非常有益。传统的 BCI 系统仅依赖于使用脑电图 (EEG) 记录的脑信号,并使用基于规则的翻译算法来生成控制命令。然而,最近使用多传感器数据融合和基于机器学习的翻译算法提高了此类系统的准确性。本文讨论了各种 BCI 应用,例如远程呈现、物体抓取、导航等,这些应用使用多传感器融合和机器学习来控制人形机器人执行所需的任务。本文还回顾了所讨论应用中使用的方法和系统设计。
摘要 — 我们报告了一项合作项目的结果,该项目研究了在飞机制造中部署人形机器人解决方案,用于轮式或轨道式机器人平台无法进入的一些装配操作。多接触规划和控制、双足行走、嵌入式 SLAM、全身多感官任务空间优化控制以及接触检测和安全方面的最新发展表明,考虑到这种大规模制造现场的特定要求,人形机器人可能是自动化的可行解决方案。主要挑战是将这些科学和技术进步集成到两个现有的人形平台中:位置控制的 HRP-4 和扭矩控制的 TORO。在空客圣纳泽尔工厂的 1:1 比例的 A350 机身前部模型内的支架组装操作中展示了这种集成工作。我们介绍并讨论了该项目取得的主要成果,并为未来的工作提供了建议。