简介 自 1978 年唐纳德·J·凯斯勒和伯顿·库尔帕莱斯发表论文《人造卫星的碰撞频率:碎片带的形成》以来,太空垃圾一直是太空参与者关注的重要问题。尽管迄今为止在碎片清除方面采取的行动很少,但该论文引发了数十年的研究,这些研究描述了外层空间碎片的数量、类型和轨道,以及制定了世界各地认可的自愿碎片减缓标准。当今现有的大部分太空垃圾都是推进剂爆炸或蓄意破坏行为的结果。已知最大的碎片产生事件是 2007 年中国的反卫星 (ASAT) 试验,其中 SC-19 动能拦截弹故意摧毁了一颗中国气象卫星。1 为了提供关于太空垃圾寿命的参考点,目前在轨道上运行的最古老的碎片是美国先锋 1 号卫星。先锋 1 号于 1958 年发射升空,进入中地球轨道 (MEO),并将在该轨道上停留至少 200 年,直到自然衰减回地球大气层或在此之前被故意脱离轨道。2
准确的初始轨道确定(IOD)对于太空域意识(SDA)至关重要。这项研究引入了一种iod方法,旨在增强用电光(EO)传感器的短距离角度调查的未知空间对象的初始检测的轨道预测准确性。方法论将机器学习模型与轨道力学原理集成在一起。该模型在各种轨道方案的模拟观测数据集上进行了训练,包括低地球轨道(LEO),中地球轨道(MEO),地理轨道(GEO)和高度椭圆形轨道(HEO)。比较分析表明,所提出的方法的表现优于传统的纯粹角度方法,例如拉普拉斯,高斯和好东西方法,相对于观察者,角度误差的中位数降低。这种改进提高了后续跟踪工作的可靠性。网络体系结构具有两个长的短期内存(LSTM)层,然后是完全连接的(密集)层,在使用基于物理学的损耗函数预测位置和速度状态向量时,可以实现最佳结果。这些发现强调了机器学习在提高SDA功能方面的潜力。
扩散式卫星星座为导弹发射检测、低信噪比 (SNR) 红外搜索与跟踪 (IRST) 以及空间域感知提供了极具吸引力的解决方案。与将资产置于地球静止轨道 (GEO) 相比,低地球轨道/中地球轨道 (LEO/MEO) 的 Delta-V 较低,地面和大气分辨率以及可实现的 SNR 更高,并且技术更新可以更容易地完成。此外,分散式星座能够更好地吸收单个资产的损失,而不会遭受相应的系统能力损失,尤其是在采用平台网络和冗余时。部署多达数百颗卫星的星座的一个主要考虑因素是,与它们要取代的少数 GEO 资产相比,它们的实施必须在不大幅增加成本的情况下完成。此外,部署必须在短时间内(而不是几十年)完成才能实现运营效率,因此实现高制造率的能力至关重要。最后,虽然卫星平台、通信系统和处理的价格已经下降,但传统使用的红外传感器的价格却没有下降。
PatientProfiler: A Network-Based Approach to Personalized Medicine Veronica Lombardi 1, Lorenzo Di Rocco 2#, Eleonora Meo 3#, Veronica Venafra 1.3.4#, Elena di Nisio 1, Valerio Perticaroli 1, Mihail Lorentz Nicolaaeasa 3.4, Chiara Cencioni 5, Francesco Spallotta 1.6, Rodolfo Negri 1.7, Francesca Sacco 3*,完美的Livia 1* 1生物学与生物技术系“ Charles Darwin”,罗马萨皮恩扎大学,意大利罗马00185。2罗马萨皮恩扎大学统计科学系,意大利罗马00185。3罗马大学“ Tor Vergata”生物学系,意大利罗马。 4博士学位 罗马大学生物学系的细胞和分子生物学课程,意大利罗马大学5号系统分析与信息学研究所“安东尼奥·鲁贝蒂”研究所,国家研究委员会(Iasi-CNR),00185罗马,意大利,意大利,意大利6 Italy-Italy-Fiscitation Cenci Bolognetti,Sapeienza,Sapeienza,Sapienza,Sapeienza,Sapeienza,Sapeienza,Sapeienza 00185罗马,意大利。 7意大利国家研究委员会(CNR)的分子生物学与病理学研究所(IBPM),意大利00185,意大利罗马#这些作者为:livia.perfetto@uniroma equilly * corpspondence贡献了:3罗马大学“ Tor Vergata”生物学系,意大利罗马。4博士学位罗马大学生物学系的细胞和分子生物学课程,意大利罗马大学5号系统分析与信息学研究所“安东尼奥·鲁贝蒂”研究所,国家研究委员会(Iasi-CNR),00185罗马,意大利,意大利,意大利6 Italy-Italy-Fiscitation Cenci Bolognetti,Sapeienza,Sapeienza,Sapienza,Sapeienza,Sapeienza,Sapeienza,Sapeienza 00185罗马,意大利。 7意大利国家研究委员会(CNR)的分子生物学与病理学研究所(IBPM),意大利00185,意大利罗马#这些作者为:livia.perfetto@uniroma equilly * corpspondence贡献了:罗马大学生物学系的细胞和分子生物学课程,意大利罗马大学5号系统分析与信息学研究所“安东尼奥·鲁贝蒂”研究所,国家研究委员会(Iasi-CNR),00185罗马,意大利,意大利,意大利6 Italy-Italy-Fiscitation Cenci Bolognetti,Sapeienza,Sapeienza,Sapienza,Sapeienza,Sapeienza,Sapeienza,Sapeienza 00185罗马,意大利。7意大利国家研究委员会(CNR)的分子生物学与病理学研究所(IBPM),意大利00185,意大利罗马#这些作者为:livia.perfetto@uniroma equilly * corpspondence贡献了:7意大利国家研究委员会(CNR)的分子生物学与病理学研究所(IBPM),意大利00185,意大利罗马#这些作者为:livia.perfetto@uniroma equilly * corpspondence贡献了:
本报告评估了位于低地球轨道的非地球静止卫星随机和受控(有针对性)再入大气层时产生的碎片对地面人员和飞机上人员的风险,以及将这些卫星送入轨道的运载火箭。联邦航空管理局将其审查范围限制在低地球轨道卫星星座的再入大气层,因为目前对发射到中地球轨道 (MEO) 及以上轨道的卫星的处置做法不包括再入大气层。此外,虽然所有非地球静止卫星的发射和处置都存在碎片风险(来自卫星和任何运载火箭部件),但出于本报告中讨论的原因,大型卫星星座的发射和处置,而不是单个卫星,对地面人员和飞机上人员构成最大风险。由于大型星座是“非地球静止卫星数量呈指数增长”的原因,本报告重点关注与低地球轨道大型卫星星座碎片再入相关的碎片风险。报告的估算基于这样的假设:截至2021年3月向美国联邦通信委员会(FCC)提交的申请中提出的12个大型卫星星座将于2035年全面建成并在轨道上运行,并将根据卫星的设计寿命脱离轨道进行处置。
A.个人陈述我于2004年在Massimo Zeviani博士的实验室中进入了线粒体医学领域的神经学研究所“ C.Besta”在意大利米兰,在2009年,我在Massimo Zeviani博士的监督下被任命为初级团体。从那时起,我的主要研究兴趣一直集中在翻译方面,其最终目标是阐明人类疾病的生物学基础并开发创新和有效的疗法。到此为止,我开发了一系列线粒体疾病的动物模型,并通过使用几种技术来表征它们,从体内测试到研究疾病的神经代谢基础,到基于代谢组学和蛋白质组学的体外方法,以阐明对基因的代谢后果,对人类的疾病进行了疾病,并调查了对人的疾病的代谢后果。基于导致疾病的机制的知识,我使用药理学和基因治疗策略开发了新的治疗方法。这些研究的主要成就是(i)发现乙纳马氏脑病(EE)的致病机制,即最近,由于核基因缺陷,我的实验室证明了基于AAV的基因疗法在其他线粒体疾病中的潜力(Bottani等,Mol Ther,2014; Di Meo等,Gene Therapy,2017,2017,Pinheiro等,Pinheiro等,Mol Ther,Mol Ther,Mol ther,2020,Corrà等,Brain,Brain,20222222222222。这些研究构成了未来几年将这些疗法转移给人类的基本原则的证据。强大的细胞色素C氧化酶抑制剂硫化物(H2S)的积累(Tiranti等,Nat Med,2009)(ii)基于N-乙酰甲基半胱氨酸和甲硝唑高质的疗法的发展,在小鼠和患者中的EE治疗中有效,这是IIS Comcomi et Comcomi,Nat,Nat,Nat,Nat At ant,Nat,Nat At ant,通过使用AMPK激动剂AICAR或NAD+前体烟胺核苷(NR),PGC1ALPHA依赖性线粒体途径有效地改善细胞色素C氧化酶缺乏症的小鼠模型的表型由于有毒化合物的积累,例如EE和线粒体胃肠脑膜炎肌病(MNGIE),基因治疗方法治疗线粒体疾病(Di Meo等,Embo Mol Med,2012; Torres-Torres-Torres-Torronteras等,Mol Ther,2014年)。最后,他与英国剑桥Michal Minczuk合作,通过使用锌指核酸酶,帮助开发了一种基于AAV的方法来纠正特定的mtDNA突变(Gammage等人Nat Med,2018)。我们在我的实验室中进行的其他研究旨在研究通过使用替代氧化酶通过使用替代性氧化酶来解决呼吸链缺损的可能性(Dogan等,Cell Metab,2018),以定义雷帕霉素改善Mitochrial
迈克尔·莫斯格(Michael Mosig)出生日期,1982年4月27日出生地点,佩格尼茨(Pegnitz)婚姻状况,两个孩子2001年在2./abcabwlehrbtl 210,Sonthofen 2001 - 2004年的官员培训和分配中,在集体/platoon命令级别ABC/SES和ABCABWBTL 210和ABCABWENTHES 2008 Al Technology,Bundeswehr大学,慕尼黑2008 - 2009年排长防火保护1./Spezpibtl 464,Speyer 2009 - 2011年在高级消防服务技术服务中培训,汉堡消防学院,2012年,2012年讲座厅Manage Fire Protection ABC/SES VII。 5./ABCAbwBtl 750,布鲁赫萨尔 2015 – 2017 总参谋部和海军上将参谋部国家课程,FüAkBw,汉堡 2017 – 2019 G3 AusbKdo Dez II 4,国际培训事务,莱比锡 2019 – 2021 演习计划员 USAREUR G3/7 TREX,威斯巴登 2021 – 2022 参谋军官分部 BMVg SE III,柏林 2022 – 2024 政策官员 BMVg SE III 1/MEO III 1,柏林 2024 – 至今 ABCAbwBtl 7 指挥官,赫克斯特
ADR – 主动碎片清除 ASAT – 反卫星武器 COMSATCOM – 商业卫星通信 COTS – 商用现货 DARPA – 国防高级研究计划局 DoD – 国防部 DoS – 国务院 DSS – 国防太空战略 FAA – 联邦航空管理局 FCC – 联邦通信委员会 GEO – 地球同步轨道 GPS – 全球定位系统 GSD – 地面采样距离 HEO – 高椭圆轨道 IADC – 机构间空间碎片协调委员会 ICBM – 洲际弹道导弹 IoT – 物联网 ISR – 情报、监视和侦察 ITU – 国际电信联盟 LEO – 低地球轨道 MEO – 中地球轨道 NASA – 美国国家航空航天局 NATO – 北大西洋公约组织 NDSA – 国防空间架构 NOAA – 国家海洋和大气管理局 NPRM – 拟议规则制定通知 NSSS – 国家安全太空战略 ODMSP – 轨道碎片缓解标准实践 OST – 外层空间条约 PNT – 定位、导航和授时 RPO – 会合和近距操作 SATCOM – 卫星通信 SBIR – 天基红外监视 SDA – 空间发展局 SSA – 空间态势感知 SSN – 空间监视网络 STM – 空间交通管理 UNCOPUOS – 联合国和平利用外层空间委员会 UTC – 世界协调时 WMD – 大规模杀伤性武器
姓名 Michael Mosig 出生日期 27.1982 年 4 月 出生地点 Lauf a.d.佩格尼茨 婚姻状况 已婚,有两个孩子 2001 加入德国联邦国防军,就职于 2./ABCAbwLehrBtl 210,松托芬 2001 – 2004 在 ABC/SeS 和 ABCAbwBtl 210,松托芬以及 ABCAbwBtl 750,布鲁赫萨尔进行军官培训和组/排指挥级别的任务 2004 – 2008 在德国联邦国防军大学学习土木工程和环境技术,慕尼黑 2008 – 2009 排长消防排长 1./SpezPiBtl 464,施派尔 2009 – 2011 高级消防技术服务培训,汉堡消防学院 2011 – 2012 消防 ABC/SeS VII 讲座厅经理。Insp,Stetten,又名市场 2012 – 2015 连长 5./ABCAbwBtl 750,布鲁赫萨尔 2015 – 2017 总参谋部和海军上将参谋部国家服务课程,FüAkBw,汉堡 2017 – 2019 G3 AusbKdo Dez II 4,国际培训事宜,莱比锡 2019 – 2021 演习策划员 USAREUR G3/7 TREX,威斯巴登 2021 – 2022 参谋军官分部 BMVg SE III,柏林 2022 – 2024 政策官员 BMVg SE III 1/MEO III 1,柏林 2024 – 至今 指挥官 ABCAbwBtl 7,赫克斯特
摘要 在 EU-SST 研发活动框架内,法国国家太空研究中心和阿丽亚娜集团设计并开发了新的光学监视策略,以便以协调或非协调的方式对低地球轨道、中地球轨道和高地球轨道上的空间物体进行分类。这些活动的第一部分是分析公开文献中的最新技术,并根据从这些论文中找到的元素构建我们自己的解决方案。然后,针对每个轨道区域制定了监视策略,重点是低地球轨道和中地球轨道。两者都有一种协调模式:这意味着这些策略会考虑到站点位置和每个站点可以勘察的天空区域来优化要勘察的天空区域;还为每种策略开发了一种非协调模式,以便评估对性能的影响。针对每种轨道区域已经开发了几种监视模式,本文将对这些模式进行介绍。本文将基于法国国家太空研究中心 BA3E 模拟器和阿丽亚娜集团工具,描述这些策略在由 EU-SST 传感器形成的理论光学网络上的模拟性能。最后,在为期两周的活动期间,使用 GEOTracker® 传感器进行了一项操作实验,以挑战和评估这些策略在操作条件下的性能。