目的:探索基于生物信息学的肥胖与疾病发生之间的关联。方法:主要目标是从相关疾病数据库(Genecards,TTD,Omim,Uniprot)中获得的,其中具有“肥胖”,“心血管疾病”,“心脏病”,“癌症”和“肝脏代谢障碍”的关键词。Based on the STRING database, the protein-protein interaction network of dis- ease and obesity cross-targets was constructed, the core targets were screened, and the DAVID data- base was used to analyze the gene ontology function (GO) and Kyoto Encyclopedia of Genes and Ge- nomes (KEGG) pathways, so as to predict the non-coding RNA and transcription factors acting on the core targets, and construct基因调节网络。结果:在肥胖和心血管疾病之间筛选了总共25个核心目标和58个相互作用的miRNA。有30个肥胖和心脏病的核心目标,有81个相互作用的miRNA。有25个肥胖和癌症的核心靶标,以及84个相互作用的miRNA。有30个肥胖和肝脏代谢疾病的核心靶标,还有73个相互作用的miRNA。肥胖和心血管疾病的核心靶标主要富含脂质,动脉粥样硬化,腺苷酸激活的蛋白激酶,信号传导途径等。肥胖和心脏病的核心靶标主要富含胆固醇代谢,脂质动脉粥样硬化和其他信号通路。肥胖和癌症的核心靶标主要在腺苷酸激活的蛋白激酶和磷脂酰肌醇3-激酶-akt信号通路中富含。肥胖和肝脏代谢性疾病的核心靶标主要富含非酒精性脂肪肝病和脂肪细胞因子信号通路。本研究为肥胖与疾病之间复杂关系的后续探索提供了一个新的方向和新思路。
Rosalind Lee、Rhonda Feinbaum 和 V. Ambros (1993) 秀丽隐杆线虫异时基因 lin-4 编码小 RNA
Sorich (2015) 发表了一项系统评价和荟萃分析,纳入了 9 项 RCT,包括 5948 名转移性结直肠癌患者,评估了 KRAS 外显子 2 变异和新 RAS 变异,新 RAS 变异定义为 KRAS 外显子 3 和 4 以及 NRAS 外显子 2、3 和 4 的变异。[17] NRAS 外显子 2、3 和 4 变异的患病率为 0.5% 至 4.8%,与 KRAS 外显子 3 和 4 变异的患病率相似,后者在肿瘤中的患病率为 4.3% 至 6.7%。汇总数据表明,与具有这些变异的肿瘤相比,使用抗 EGFR 单克隆抗体 (mAb) 治疗没有 KRAS 外显子 2 变异或新 RAS 变异的肿瘤具有明显更好的 PFS (p<0.001) 和 OS (p=0.008)。此外,与新 RAS 变异相比,具有 KRAS 外显子 2 变异的肿瘤的 PFS 或 OS 没有差异。这些结果在不同的抗 EGFR mAb 药物、治疗方法和化疗之间是一致的。在具有 KRAS 外显子 2 变异或新 RAS 变异的肿瘤中使用抗 EGFR mAb 药物没有观察到 PFS 或 OS 益处 (p>0.05)。根据这些结果,作者得出结论,大约 53% 的转移性结直肠肿瘤(约 42% 具有 KRAS 外显子 2,约 11% 具有新的 RAS 变体)不太可能对抗 EGFR mAb 疗法产生积极反应。这项汇总数据分析的结果表明,NRAS 变体结果可用于指导转移性结直肠肿瘤患者的治疗决策,因为具有 NRAS 变体的患者不太可能从抗 EGFR mAb 疗法中受益。
1 Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany 2 German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany 3 Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany 4 German Centre对于心血管研究(DZHK),合作伙伴网站Greifswald,17475年德国格里夫斯瓦尔德; matthias.nauck@med.uni-greifswald.de(m.n。)5诊断放射学和神经辐射研究所,大学医学,格里夫斯瓦尔德大学,17475年,德国格里夫斯瓦尔德,6临床化学和实验室医学研究所,大学医学,格雷夫斯瓦尔德大学,17475年,德国格里夫斯瓦尔德,德国格雷夫斯瓦尔德,德国7研究院7研究院,社区医学,格雷夫斯瓦尔德大学,17475年,格雷夫斯瓦尔德,格雷夫斯瓦尔德,德国,德国,德国 * auweras@uni-greifswald.de;电话。 : +49-3834-8669205诊断放射学和神经辐射研究所,大学医学,格里夫斯瓦尔德大学,17475年,德国格里夫斯瓦尔德,6临床化学和实验室医学研究所,大学医学,格雷夫斯瓦尔德大学,17475年,德国格里夫斯瓦尔德,德国格雷夫斯瓦尔德,德国7研究院7研究院,社区医学,格雷夫斯瓦尔德大学,17475年,格雷夫斯瓦尔德,格雷夫斯瓦尔德,德国,德国,德国 * auweras@uni-greifswald.de;电话。: +49-3834-866920
。CC-BY-NC-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是 预印本的版权持有者(此版本于 2024 年 7 月 22 日发布。 ; https://doi.org/10.1101/2024.07.19.604260 doi:bioRxiv 预印本
摘要 回顾近年来的亨廷顿舞蹈症动物模型,发现许多microRNA在纹状体和大脑皮层中的表达水平发生改变,且大多下调。发生改变的microRNA包括miR-9/9*、miR-29b、miR- 124a、miR-132、miR-128、miR-139、miR-122、miR-138、miR-23b、miR-135b、miR- 181(均下调)和miR-448(上调),类似的变化此前也在亨廷顿舞蹈症患者中发现过。在动物细胞研究中,发生改变的microRNA包括miR-9、miR-9*、miR-135b、miR-222(均下调)和miR-214(上调)。在动物模型中,miR-155 和 miR-196a 的过表达导致突变型亨廷顿蛋白 mRNA 和蛋白质水平下降,纹状体和皮质中的突变型亨廷顿蛋白聚集体降低,并改善行为测试中的表现。miR-132 和 miR-124 的过表达也使行为测试中的表现得到改善。在动物细胞模型中,miR-22 的过表达增加了感染突变型亨廷顿蛋白的大鼠原代皮质和纹状体神经元的活力,并减少了 ≥ 2 µm 的亨廷顿蛋白富集灶。此外,miR-22 的过表达提高了用 3-硝基丙酸处理的大鼠原代纹状体神经元的存活率。外源性表达 miR-214、miR-146a、miR-150 和 miR-125b 会降低 Hdh Q111 / Hdh Q111 细胞中内源性亨廷顿蛋白 mRNA 和蛋白质的表达。有必要对亨廷顿氏病动物模型进行进一步研究,以验证这些发现,并确定特定的microRNA,它们的过度表达可抑制突变亨廷顿蛋白的产生和其他有害过程,并可能为治疗亨廷顿氏病患者和减缓其进展提供更有效的方法。关键词:动物模型;大脑皮层;亨廷顿蛋白;亨廷顿氏病;microRNA;神经退行性;纹状体;治疗策略
摘要在精神分裂症中,大脑和周围组织中转录的改变可能是由于microRNA生物发生机制基因的表达改变所致。在这项研究中,我们探索了这些基因在脑和外围水平上的表达。我们使用闪亮的GEO应用来分析来自十个基因表达综合数据集的基因表达,以对编码MicroRNA生物发生机制的八种基因进行差异表达分析。首先,我们比较了候选受试者和精神分裂症患者在七个不同大脑区域的死后脑样本中的表达。然后,我们比较了三个外围组织中对照组受试者和精神分裂症个体之间候选基因的表达。在精神分裂症个体的大脑和周围组织中,我们报告了microRNA生物发生机制基因的明显改变的表达模式。在具有精神分裂症的个体的背侧前额叶皮层,缔合纹状体和小脑中,我们观察到某些候选基因的过表达模式表明这些大脑区域中miRNA产生增强。此外,在海马中确定了混合的转录异常。此外,在精神分裂症个体的血液和嗅觉上皮中,我们观察到了候选基因的独特异常转录模式。miRNA生物发生机制的转录破坏可能有助于脑和外周组织中的精神分裂症发病机理。值得注意的是,在精神分裂症患者中,我们报告了背外侧前额叶皮层,海马和小脑的DICER1过表达,以及血液中的dicer1上调,这表明它可能代表外围标记。
背景:观察到异常的DNA甲基化是乳腺癌发生的早期事件。但是,这种变化是如何出现的。microRNA(miRNA)在转录后水平调节基因表达,并在各种生物过程中起关键作用。在这里,我们整合了miRNA表达和CpGS的DNA甲基化,以研究miRNA如何影响乳腺癌甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基,以及DNA甲基化如何调节miRNA表达。方法:来自两个乳腺癌队列的miRNA表达和DNA甲基化数据(n = 297)和癌症基因组地图集(n = 439),通过一种相关方法整合,我们将miRNA-甲基化定量定量性状特征基因座(MIMQTL)分析。层次聚类用于鉴定miRNA和CPG的簇,这些聚类通过分析mRNA/蛋白质表达,临床病理学特征,在硅氧化液反应,染色质状态和可及性,转录因子结合和长期相互作用数据中进一步表征。
外泌体microRNA(miRNA)在针对肝细胞癌(HCC)的战斗中具有巨大的潜力,这是全球癌症相关死亡的第四个最常见原因。在这项研究中,我们探讨了这些小分子的各种应用,同时分析它们在肿瘤发育,转移和肿瘤微环境中的变化中的复杂作用。我们还讨论了外泌体miRNA与其他非编码RNA(例如圆形RNA)之间存在的复杂相互作用,并展示了这些相互作用如何协调推动HCC发展的重要生物化学途径。靶向外泌体miRNA进行治疗干预的可能性至关重要,甚至超出了其机械意义。我们还强调了它们作为尖端生物标志物的日益增长的潜力,可以通过实现早期识别,精确的预后和实时治疗反应监测来导致量身定制的治疗计划。这种彻底的分析表明,外泌体miRNA的复杂网络导致HCC进展。最后,还讨论了外泌体和先进的生物传感技术检测外泌体miRNA的策略。总的来说,这项全面的评论阐明了HCC中复杂的外泌体miRNA的网络,为未来的诊断,预后和最终进步提供了宝贵的见解,并最终为与这种致命疾病作斗争的患者提供了改善的结局。
全身药物输送是当前癌症治疗的临床首选途径。然而,挑战伴随着肿瘤定位和肿瘤的毒性作用限制了该途径的临床有效性。局部元药物输送是全身疗法的新兴替代品。随着实时成像技术和直接进入肿瘤病变的工具的改进,局部区域药物输送的临床适用性变得越来越突出。从理论上讲,局部治疗可以绕过全身药物输送面临的挑战。临床上,药物的局部递送表现出增强的治疗功效,脱离靶向效果有限,同时仍产生潜线效应。在临床上,正在研究一系列局部区域策略,以提供目标和大小的药物。可以将局部肿瘤治疗策略分为两个主要类别:1)通过注射或植入端口直接输注药物,以及2)通过注射或植入的仓库扩展药物洗脱。在临床前和临床环境中,调查局部癌症治疗局部药物治疗策略的研究数量正在呈指数增长,并批准了一些用于临床使用的方法。在这里,我们重点介绍了此类局部分娩策略在癌症治疗中的关键临床前进步和临床相关性。此外,我们对涉及局部药物输送的949临床试验进行了严格分析,并讨论了新兴趋势。