本文公开的创新是添加剂的形式,该添加剂由含有环氧树脂、极性稀释剂、腐蚀抑制剂和粘合促进剂的微胶囊化修复剂组成。微胶囊可以配制成水性和溶剂型液体环氧涂料、富锌底漆、粉末涂料和熔接环氧涂料。一旦完全固化,这些涂层的损坏会使微胶囊破裂,从而将修复剂释放到损坏部位,在那里聚合、密封损坏边缘、延迟底切并促进涂层粘合性的维护。改进的粘合性维护使涂层的使用时间更长,从而最大限度地减少了重新涂装和维护所需的程度以及由于资产使用寿命内的停机而导致的生产力损失。下面提供了说明与在腐蚀环境中使用的涂层的寿命延长相关的成本节省的示意图:
有时最小的创新是最大的革命。temprakon最初是由NASA太空诉讼的技术和微胶囊创建的,这些技术和微型套件帮助宇航员在太空的极端条件下调节温度。Temprakon为羽绒被和枕头设定了新的标准 - 超过15年为数千名客户提供了更好的睡眠。
组织工程的目的是在三维(3D)支架中应用生物材料以改善整个器官或受损组织。天然聚合物作为微观和纳米级的独特生物材料,在组织工程,感染伤口愈合和抗生素递送方面表现出了有希望的应用。Among these biopolymers, alginate, cellulose, and collagen have obtained significant attention in bone regeneration, cartilage repair, tissue healing, microbial-infected wound healing, and 3D scaffolds for cell therapy in different micro- and nanoformulations involving hydrogels, sponges, microspheres, microcapsules, foams, nanofibers, polymeric nanoparticles.此外,免疫原性和微生物感染在组织工程和组织植入物中具有潜在的健康风险。这项简洁的综述提供了藻酸盐,纤维素和胶原蛋白在组织工程以及抗菌微观和纳米成型中应用的最新进展和临床局限性。
摘要:食品行业一直在寻找创新的方法,以确保消费者获得最高质量。新提案包括使用多碳酸酯(PCL),这是一种常用的生物聚合物,可在许多有机溶剂中溶于作用。PCL功能可以通过与其他聚合物和生物活性分子的混合物进行修改,以扩大其在食品行业中的应用。例如,包装和活性物质的发展是基于PCL的。本评论探讨了PCL在食品行业中的应用,涵盖了其作为可生物降解的活动包和封装代理的作用。评论强调了在食品行业中这种聚合物的潜力。
微粒是由合成,不可生物降解和不可生物降解聚合物组成的1至1000微米之间的1至1000微米之间的游离球形粉尘。有两种类型的微粒:微胶囊和微基质。主要类型的微粒类型是磁性微粒,聚合物微粒,生物粘附的微粒,可生物降解的聚合物微粒,合成聚合物微粒,浮动微粒和放射性微粒。微载体比纳米颗粒的优势在于,它们在淋巴运输过程中不会越过100 nm间质,因此在局部起作用。有毒物质可以以微封装和干颗粒的形式固化。此外,引入了众多物理化学参数(例如药物释放,热性能和粒径)的方法,以及新的测试,例如体外浸出测试和浮动测试。
摘要:自20世纪80年代以来,利用微流体技术生产简单(微球)和核壳(微胶囊)聚合物微粒(通常称为微胶囊化)一直是多项研究的重点。由于其特性可控、可调,且产率可达100%,因此该工艺快速、经济、高效。然而,其绿色环保性、可持续性和可扩展性仍不明确,需要加强该领域的认知和教育。微流体技术生产工艺的可持续性可以基于三大支柱实现/讨论:(i) 废物产生,(ii) 所用溶剂,以及 (iii) 原材料。另一方面,尽管已有多篇论文报道了这些工艺的放大,即并行设置数百或数千个微流控芯片,但据我们所知,尚未探讨这种放大工艺的可持续性。本意见书强调了微流体封装工艺的优势、根据上述支柱 (i-iii) 的绿色性以及在保持其可持续性的同时扩大其规模所需的考虑因素。
摘要 - 这项研究列出了通过乳液形成方法预处的壳聚糖微观结构中的长矛油(SMO)的封装。SMO虽然具有药物意义,但由于其在条件下的稳定性较小和高波动性,但在医疗和功能纺织品中发现了lim的应用。尽管如此,它在壳聚糖中的封装可能会增强其在上述目的的稳定性和适用性。使用不同的分析技术表征了SMO封装的壳聚糖微观结构,并通过柠檬酸的绿色交联应用棉织物。经过处理的织物揭示了通过SEM和FTIR分析证实的微胶囊的成功粘附在其表面上。那里观察到处理的织物的拉伸强度略有下降;然而,通过减少其99%的人口,改善了折痕恢复行为和良好的抗菌活性,以应对广谱细菌菌株;而这种织物的刚度在某种程度上表现出趋势。因此,在此产生的增值多功能纺织品可以为潜在的医疗和医疗保健应用提供表面和抗菌活性,而不会损害其舒适性。
目前正在开发各种药物输送和药物靶向系统,以最大限度地减少药物降解和损失,防止有害副作用,提高药物的生物利用度和在所需区域积累的药物比例。在药物载体中,可以列举可溶性聚合物、由不溶性或可生物降解的天然和合成聚合物制成的微粒、微胶囊、细胞、细胞幽灵、脂蛋白、脂质体和胶束。载体可以制成缓慢降解、刺激反应性(例如 pH 或温度敏感)甚至靶向(例如通过将它们与针对目标区域某些特征成分的特定抗体结合)。靶向是将载药系统引导到目标部位的能力。可以区分两种主要机制来定位所需的药物释放部位:(i)被动和(ii)主动靶向。被动靶向的一个例子是化疗药物优先在实体瘤中积累,这是由于肿瘤组织的血管通透性比健康组织强。一种可以实现主动靶向的策略涉及药物载体的表面功能化,其配体可以被目标细胞表面的受体选择性识别。由于配体-受体相互作用具有高度选择性,因此可以更精确地靶向目标位点。
容量,合适的相变温度和化学稳定性。17 - 20然而,N-烷烃在太阳能利用中的大量应用是在相变期间受到液体泄漏问题的严重限制。将N-烷烃封装以形成核心 - 壳微囊被认为是一种有效的方法。但是,封装过程始终很复杂,并且封装的PCMS的相变焓显着减少。21 - 23因此,迫切需要制造含有高相变焓,形状和热稳定性的PCM的N-烷烃。最近,已引起广泛的关注,以浸入三维(3D)气凝剂中的PCM,以构建形状稳定的防漏PCM复合材料。24 - 26尤其是纳米 - 闪烁的纤维素(NFC)气凝胶不仅可以有效地防止固体 - 液态PCM的泄漏,而且还可以对环境友好。因此,有必要以NFC气凝胶作为支撑材料研究固体 - 液相变化材料。Kim等。 27使用甲基纤维素(CMC)制备的碳泡沫。 此外,复合PCM(CPCM)通过真空浸渍将促红节醇纳入纤维素碳泡沫中。 热循环测试表明,与纯赤丝醇相比,CPCM表现出的相变焓损失要少得多。 这些结果可能发生了,因为碳泡沫的孔可以防止促赤醇的泄漏,从而最大程度地减少了通过毛细管热循环测试期间的潜热损失。 Lei等。 28通过准备了一种新颖的CPCMKim等。27使用甲基纤维素(CMC)制备的碳泡沫。此外,复合PCM(CPCM)通过真空浸渍将促红节醇纳入纤维素碳泡沫中。热循环测试表明,与纯赤丝醇相比,CPCM表现出的相变焓损失要少得多。这些结果可能发生了,因为碳泡沫的孔可以防止促赤醇的泄漏,从而最大程度地减少了通过毛细管热循环测试期间的潜热损失。Lei等。 28通过准备了一种新颖的CPCMLei等。28通过
目前全身给药的主要问题是:药物在体内均匀分布;药物对病理部位缺乏特异性亲和力;需要大剂量的药物才能达到较高的局部浓度;由于药物剂量大而导致非特异性毒性和其他不良副作用。药物靶向性,即药物在靶区的主要积累,与给药方法和途径无关,可以解决其中许多问题。目前,药物靶向的主要方案包括直接将药物应用到患处、被动药物靶向(药物在血管渗漏区域自发积累,或增强通透性和保留性-EPR效应)、“物理”靶向(基于病理区域的异常pH值和/或温度)、磁靶向(或在外部磁场作用下靶向固定在顺磁性材料上的药物)以及使用特定“载体”分子(对感兴趣区域具有增加亲和力的配体)进行靶向。最后一种方法提供了最广泛的机会。可溶性聚合物、微胶囊、微粒、细胞、细胞影、脂质体和胶束等药物载体已成功用于体内靶向药物输送。虽然药物分子与靶向部分直接结合也是可能的(免疫毒素),但使用微储库型系统具有明显的优势,例如高负载能力、可以控制药物载体系统的大小和渗透性以及使用相对较少的载体分子将大量药物输送到靶标。将考虑所列系统和方法在输送治疗和诊断剂方面的实际用途。 2000 Elsevier Science BV 保留所有权利。
