这项工作继续了我们对互齐次函数 (MHF) 的性质的研究,互齐次函数是欧拉齐次函数的推广。MHF 可用于合成具有特殊性质的电子系统和离子光学系统的电场和磁场。我们考虑了对应于 MHF 基本函数关系矩阵的多个实特征值的函数链。我们推导出了响应此类函数的函数关系。我们推导出了所得函数关系解的一般公式。我们证明了所得函数是 Gel'fand 引入的相关齐次函数的细化。我们研究了所得函数的典型微分和积分性质,并证明了可微函数的欧拉定理的推广(欧拉标准)。
摘要条件相互信息(CMI)i(a:c | b)量化给定a和c之间共享的相关量b。因此,它是多部分场景中两分相关性的更一般的量化符,在量子马尔可夫链理论中起着重要作用。在本文中,我们对CMI在不同温度下在两个浴场之间放置在两个浴场之间的量子链的非平衡状态(NESS)中的CMI行为进行了详细研究。这些结果用于阐明弹道和扩散运输方式背后的机制,以及它们如何影响链条不同部分之间的相关性。我们对在边界处受到本地Lindblad散射剂的一维纤维链的特定情况进行研究。此外,该链在每个地点还受到自一致的储层,这些储层用于调整弹道和扩散之间的传输。结果,我们发现CMI独立于弹道制度中的链尺寸L,但在扩散情况下用L衰减代数。最后,我们还展示了如何使用这种缩放来讨论非平衡稳态中局部热化的概念。
以各种形式伪装的相关性是经典和量子系统中一系列重要现象的基础,例如信息和能量交换。量子互信息和相关矩阵的范数都被视为总相关性的适当度量。我们证明,当应用于同一系统时,这两个度量实际上可以表现出明显不同的行为,至少在两种极端情况下除外:当没有相关性时和当存在最大量子纠缠时。我们通过提供相互作用的二分系统度量的时间导数的解析公式来进一步量化差异。我们认为,要正确解释相关性,应该考虑相关矩阵(以及子系统的简化状态)提供的全部信息。标量(例如相关矩阵的范数或量子互信息)只能捕捉相关性复杂特征的一部分。作为一个具体的例子,我们表明在描述与相关性相关的热交换时,这两个量都不能完全捕捉潜在的物理特性。作为副产品,我们还证明了具有局部和短程相互作用的系统中量子互信息的面积定律,而无需假设马尔可夫性或最终热平衡。
2 | ⟨ ψ | [ A, B ] | ψ ⟩| 取决于初始状态,因此并不固定,以至于当 | ψ ⟩ 的某些选择时它会消失,这些选择不必是可观测量 A 和 B 的同时特征函数。此外,基于偏差的不确定性关系通常不能捕捉可观测量互补方面 [12] 的物理内容和信息内容的传播 [13]。用可观测量的熵来表示不确定性最早是由 Everett [17] 提出的。参考文献 [14] 对此进行了肯定的回答,即位置和动量可观测量的熵之和满足不等式。对于具有连续谱的可观测量,这种熵不确定关系分别在参考文献 [15, 16] 中得到证明和改进。当系统状态为高斯波包时,不等式的下界成立。熵不确定性关系在有限维希尔伯特空间中的可观测量的扩展最早在文献[11]中提出,后来在文献[18]中得到改进。我们希望