构建能够进行自然和长时间对话的对话代理一直是一项重大的技术和设计挑战,特别是对于面向社区的对话代理而言。我们提出相互心智理论作为设计自然的长期人机交互的理论框架。从这个角度来看,我们通过在线教育背景下的自我报告调查和计算语言学方法探索社区对问答对话代理的看法。我们首先研究学生对 Jill Watson (JW) 的看法的长期时间变化,JW 是部署在在线课堂讨论论坛中的虚拟助教。然后,我们探讨通过从学生-JW 对话中提取的语言特征来推断学生对 JW 的看法的可行性。我们发现,学生对 JW 的拟人化和智力的看法随着时间的推移发生了显着变化。回归分析表明,语言的冗长性、可读性、情感、多样性和适应性反映了学生对 JW 的看法。我们讨论了构建面向社区的自适应对话代理作为长期伴侣以及设计面向人机交互中的相互心智理论的意义。
主要关键词