伊斯兰阿扎德大学德黑兰医学科学学院药物学系,伊朗伊朗伊斯兰艾尔兰大学,伊朗B酿酒和饮料技术主席Facultod de Ciencias Para El Cuidado de la Salud, Universidad San Sebastian, Campus Las Tres Pascualas, Lientur 1457, 4080871 Concepci ´, Chile d University ´ and Clermont Auvergne, Clermont Auvergne Inp, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France and Institut法国大学(IUF),1街笛卡尔,75005巴黎,法国F贝尔格莱德大学,VINCA核科学研究所,塞尔维亚国立共和国研究所,迈克·佩特罗维卡·阿拉萨(Mike Petrovica Alasa)12-14,贝尔比亚11000,塞尔维亚G研究所,塞尔维亚G研究所,塞尔维亚G研究所,塞尔维亚G研究所,塞尔维亚G研究所,塞尔维亚G研究所(Compos,Composites and Campi and Biomarials)(IPCBI)(IPCBI)。 Flegrei 34,80078 Pozzuoli,意大利伊斯兰阿扎德大学德黑兰医学科学学院药物学系,伊朗伊朗伊斯兰艾尔兰大学,伊朗B酿酒和饮料技术主席Facultod de Ciencias Para El Cuidado de la Salud, Universidad San Sebastian, Campus Las Tres Pascualas, Lientur 1457, 4080871 Concepci ´, Chile d University ´ and Clermont Auvergne, Clermont Auvergne Inp, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France and Institut法国大学(IUF),1街笛卡尔,75005巴黎,法国F贝尔格莱德大学,VINCA核科学研究所,塞尔维亚国立共和国研究所,迈克·佩特罗维卡·阿拉萨(Mike Petrovica Alasa)12-14,贝尔比亚11000,塞尔维亚G研究所,塞尔维亚G研究所,塞尔维亚G研究所,塞尔维亚G研究所,塞尔维亚G研究所,塞尔维亚G研究所(Compos,Composites and Campi and Biomarials)(IPCBI)(IPCBI)。 Flegrei 34,80078 Pozzuoli,意大利
简单总结:乳腺癌是女性中最常见的癌症,也是癌症相关死亡的主要原因。尽管有几种治疗方法,但全身化疗仍然是主要选择,尤其是对于晚期乳腺癌的治疗。不幸的是,全身化疗会引起许多副作用和对远端器官的损害,并且需要高剂量的药物才能在肿瘤区域达到治疗浓度。使用纳米系统进行药物输送是一种有希望克服这些缺点的策略。在这项研究中,我们开发了含有化疗药物多西他赛的聚(乳酸-乙醇酸)纳米颗粒 (PLGA-NPs),用环状 RGD 三肽功能化,以允许对乳腺癌中过表达的 α v β 3 整合素进行主动靶向。我们证明 PLGA 在临床前模型中有效地将药物输送到乳腺癌细胞,并且比游离多西他赛更有效地阻止肿瘤进展,同时减少副作用。
不幸的是,如今,脑部疾病(包括神经和精神疾病)是全世界范围内导致残疾的主要原因。一些严重疾病的发病率和死亡率都很高。然而,过时的技术基础设施使得治疗这些疾病变得困难。血脑屏障 (BBB) 是中枢神经系统 (CNS) 的保护机制,调节其稳态过程。大脑受到一个极其复杂的系统的保护,免受伤害和疾病的侵袭,该系统精确调节离子、极少量微小分子以及更少数量的大分子从血液流向大脑。然而,血脑屏障也大大抑制了药物向大脑的输送,使得无法治疗各种神经系统疾病。目前正在研究几种策略来增强药物在血脑屏障上的运输。根据这项研究,纳米粒子是治疗脑部疾病最有希望的药物之一,虽然许多传统药物也能够穿过这一屏障,但
纳米颗粒在纳米技术领域起着至关重要的作用,由于其表面积归因于其小尺寸,因此提供了不同的特性。中,银纳米颗粒(AGNP)由于其抗菌特性而引起了极大的关注,其应用可以追溯到古老的药用实践到包含离子或银纳米颗粒的当代商业产品。agnps除了与某些抗生素结合使用时表现出协同作用,还具有针对细菌,真菌,病毒和分枝杆菌的广谱杀生物潜力。其抗菌作用的机制包括产生氧气反应性物种,对DNA的损伤,细菌细胞膜破裂和抑制蛋白质合成。最近的研究强调了AGNP通过对抗抗生素耐药性病原体的潜力来对各种临床相关的细菌菌株的有效性。本综述研究了AGNP发挥其抗菌作用的蛋白质组学机制,特别着眼于它们针对浮游细菌和生物膜中的活性。此外,它讨论了AGNP的生物医学应用及其对抗生素制剂的潜在不准备,还解决了对抗生素耐药性的问题。
摘要材料科学领域见证了范式的转变,基于农业的纳米颗粒复合材料的出现表现出了出色的高级应用潜力。农业副产品(例如纤维素,木质素和几丁蛋白)由于丰度,可更新性,低不良环境影响和可接受的机械性能而被选为基本材料。与传统材料相比,开发的复合材料具有优越的特异性机械性能。本评论探讨了为弹道目的而在复合材料开发中基于农业的纳米颗粒的综合,表征和应用。基于当前的可持续性目标的基于农业的复合材料的生态友好性和合成,为弹道应用中使用的常规材料提供了绿色替代品。农业副产品的利用不仅减轻了环境问题,而且还通过将废料重新利用为高价值产品来促进循环经济。本评论通过利用基于农业的纳米颗粒复合材料的潜力来展示弹道材料领域的一种新方法。
结核病是一种传染性细菌疾病,仍然是发病率和死亡率上升的全球健康问题。根据2022年全球结核病报告,结核病已超过艾滋病毒,是世界上最致命的传染病(世界卫生组织,2022年)。骨结核病占肺内结核病的35%。由于对现有的抗结核药物的反应不佳和局部骨组织中药物浓度较低,因此传统的药物疗法不会导致骨结核病的令人满意的治疗(Wang B.等,2021)。此外,抗结核药物的渗透不良,需要长期服用高药剂量才能维持局部骨组织中的浓度。因此,骨骨结核病的传统口服治疗至少涉及至少12个月的高剂量药物。(Li等,2016)。不幸的是,在开始药物治疗的一段时间后,大多数患者抱怨严重的副作用,其中一些患者退出了早期治疗,导致患者的依从性较低,甚至是耐多药耐药性结核病的紧急情况。在第一线抗结核药物中,rifampicin遭受了各种缺点,例如短期半寿命,差的生物利用度和高肝毒性,导致血液中利福平的利福平水平和增加的多重耐药性结核病的风险增加(toft an e an toft et aft al and。相比之下,利福丁是一种利福米霉素衍生物,半衰期和抗结核细胞比利福平(Zumla et al。,2015)大几倍。尽管在我们先前报道的作品中开发了含有利福丁的复合支架并植入骨缺陷,但不可能重复给药(Wang Z.等,2021)。因此,要开发一种可以减少药物剂量和频率的递送系统,同时改善局部骨组织的治疗作用似乎是长期药物治疗骨骨结核病的最有前途的选择。当前增强当前药物治疗活性的策略是将药物置于输送系统中。药物输送系统以提高药物分子的渗透性,溶解度和代谢稳定性。在各种系统中,纳米颗粒(NP)具有与自由药物相比的潜在优势,包括增加治疗效果和延长药物释放(Sukhithasri等,2014)。聚合NP由于其良好的生物相容性而被广泛用于临床治疗,并且可以通过正常的代谢途径消除其副产品(Luque-Michel等,2017)。在所有生物材料中,PLGA(Poly-D,L-甲状腺素-CO-糖苷)已获得食品和药物管理局(FDA)的批准,用于生物降解性质引起的生物医学应用(Mir等,2017; Kim等,2019),并且可能是针对靶向,想象,想象,进行靶向和治疗的有益材料。此外,PEG(聚乙二醇)可以进一步提供延长NPS循环的空间屏障(Xu等,2015)。在本研究中,为了使NP延长循环时间和靶骨组织的能力,四环素(TC) - 模化的药物输送系统
能够合成纳米颗粒的抽象微生物是陆地和海洋生态系统的普遍的微层。这些微生物参与了金属的生物地球化学循环,例如降水(生物矿化),分解(生物抑制)和降解(生物形成)。微生物对金属NP的生物合成是重金属毒性耐药性机制的函数。抗性机制从将有毒金属离子转化为惰性形式的氧化还原酶,结合蛋白的结构蛋白,或通过使用质子运动力,化学效应梯度或ATP水解的EF漏水蛋白,或者与ATP水解一起运输金属离子,这些蛋白质与ATP水解相结合,以辅助合成NAnAparparticle Cysessices。本章侧重于生物系统;细菌,真菌,放线菌和藻类用于纳米技术的利用,尤其是在开发可靠且环保的过程中用于合成金属纳米颗粒的过程。丰富的微生物多样性指出了它们的先天潜力,以充当纳米颗粒合成的潜在生物效应。
纳米尺度,纳米 (nm) 是长度测量的通用单位 (IS),即十亿分之一米 (10 -9 m)。纳米尺度测量非常重要,因为在这个尺度上,材料的性质可能与大尺度上的不同。例如,金分子不活跃。因此,它被用作珠宝。然而,在纳米尺度上,金分子变得非常活跃,并用于治疗癌症的医学。图 (1) 显示了纳米尺度的例子,例如病毒的大小约为 200 纳米,水分子的大小接近 0.3 纳米。分子的性质可以在纳米尺度上改变,因为与以微观形式生产的相同质量的材料相比,纳米材料每单位/体积的表面积相对较大。这可以使它们更具化学反应性。可以生产许多一维纳米尺度的材料,例如非常薄的表面涂层(半导体、金属、碳)。纳米技术着眼于这些小颗粒的新用途。纳米颗粒的例子有很多