1.2 eV (间接、多层),理论电子和空穴迁移率分别约为 250 和 270 cm 2 V − 1 s − 1。6 – 8 WSe 2 以其独特的物理性质为具有优异光电性能的多功能电子和光电子器件打开了大门。近年来,基于范德华 (vdW) 垂直异质结构或横向 p – n 异质结的新型人工结构在 WSe 2 光电器件应用中引起了极大的兴趣。9 – 14 例如,Jo 等人证明,通过三苯基膦 n 掺杂法显着提高了基于 WSe 2 /h-BN 的 p – n 异质结光电探测器的光响应度。 15 Guo 等人报道,由 p 型 WSe 2 和 n 型 ZnO 结合制成的 WSe 2 – ZnO p – n 异质结光电探测器在 405 nm 光照下表现出 4.83 × 10 3 AW − 1 的超高光响应度。16 Liu 等人报道,基于 WSe 2 – Bi 2 Te 3 p – n 异质结的光电探测器在 633 nm 光照下可产生约 210 μ s 的快速响应时间和约 20.5 AW − 1 的高光响应度。17
统一。7-11尽管Cd基量子点具有吸引人的特性,但由于重金属固有的毒性,其应用受到很大限制。因此,人们做出了巨大的努力来发现有效的无重金属替代品合成策略,如基于InP、ZnTe和ZnSe的纳米晶体。6,12虽然过去十年来这些无重金属组合物的光学性质有了显着改善,但由于用于合成设计和优化的基于反复试验的方法,阻碍其发现和优化的主要瓶颈仍然存在。这种反复试验的方法阻碍了整个发现过程,包括识别目标材料和随后开发合成途径以实现最佳光学特性。用于合成胶体量子点的传统烧瓶式间歇反应器平台通常需要进行大量实验来探索巨大的反应空间,然后才能接受或放弃合成配方。虽然对成核生长过程的热力学和动力学理解可以提供有用的见解,但它们通常非常复杂且理解不足,无法为优化半导体纳米晶体合成参数提供可靠的框架。作为
激子特性。例如,它们显示出量子孔限制,大激子结合能,快速辐射重组率以及狭窄和宽带光致发光。1 - 3从结构上讲,这些特性可以通过(i)无机笼的化学成分进行调节; (ii)对其合成中使用的大机阳离子类型的变化; (iii)八面层的数量。大多数效果都集中在控制无机层之间分配的有机部分的性质上,以修改金属的连接和方向 - 卤化物八面体板,因为它发生在Ruddlesdeledlesdeledlesdleper popper结构中。4 - 7以这种方式,可以使用基于溴化物的LP的高度扭曲的晶格,从而诱导自被捕的激子的形成,从而导致间隙内态的白光发射。8 - 11
金属蛋白是蛋白质,其中至少包含一种将金属掺入其结构中的蛋白质,其中金属对于蛋白质的正常功能是必需的。1它们在天然系统中很丰富,金属离子具有广泛的功能,包括小分子的运输和存储(例如,具有Fe 2+位点的血红蛋白),蛋白质结构(锌指Zn 2+位点)的稳定,信号传导(信号转导中的Ca 2+通道)和催化。2,3参与催化转化的金属蛋白称为金属酶。 他们可以进行异常高的选择性和特异性的反应,包括热力学上很难反应,例如将二氮的还原减少到铵(硝基属)或光合作用中的水的氧化。 4通常,2,3参与催化转化的金属蛋白称为金属酶。他们可以进行异常高的选择性和特异性的反应,包括热力学上很难反应,例如将二氮的还原减少到铵(硝基属)或光合作用中的水的氧化。4通常,
图1显示了第一代溅射铂NW的室温LF噪声谱,该NW采用基片阶梯光刻技术制造,其工艺顺序如图2所示。5,7,8,51通过基片阶梯光刻技术制造的NW是多晶的,其晶粒尺寸小于线直径。5,7 – 9,16,20,51 – 54图1中NW的噪声幅度在近五十个频率范围内以1/f 1.15的速率增加。f = 1 Hz时的Hooge参数为γH≅3×10−4,这是溅射Pt线和薄膜的典型值。51,71,96,97方程(2)中噪声幅度的1/N≈1/NA依赖性推测波动来源于体源。 20 世纪 70 年代末到 80 年代中期的几项重要实验证明了缺陷和杂质在金属低频噪声中的关键作用。52,55,66,83,95,98 – 103 一个具有单一特征散射或跃迁时间 τ 的缺陷会导致 RTN,其 Lorentzian 频谱在高于 1/ τ 的频率下下降为 1/ f 2,在低于 1/ τ 的频率下保持恒定。55,62,66,95,104 – 106 第 II.B 节中给出了 ZnO NW 的示例。如果噪声是由具有以下分布的多个缺陷引起的
识别靶DNA,然后利用内切酶Cas9蛋白在靶基因位点引入位点特异性双链断裂(DSB)。3已经通过使用CRISPR/Cas9 DNA(可以编码Cas9的质粒DNA和病毒基因组)、mRNA或蛋白质获得了成功的基因编辑活动。4,5通常,直接递送Cas9/sgRNA RNP复合物是近年来最广泛的方法,因为它具有速度快、基因编辑效率高、离靶效应低和免疫反应低等优点。6然而,尽管基于RNP的治疗方法具有诸多优势,但仍存在一些挑战。目前,物理方法(电穿孔、显微注射等)和病毒载体(腺病毒、腺相关病毒等)仍然是主要的递送策略。 7,8 尽管已报道了一些非病毒纳米载体(如 DNA 纳米线、9 阳离子脂质或聚合物 10 和黑磷 11)用于 RNP 递送,但它们仍然难以在体外和体内实现有效的基因编辑。一般来说,有三个递送问题需要考虑。首先,CRISPR/Cas9 RNP 尺寸较大,表面带电较多,难以浓缩成小尺寸或封装。12
更多类似石墨烯的2D系统,例如Xenes和Xanes(其中x =硅,德语等),4 - 6个过渡金属二分法(例如,MOS 2,WS 2,Mose 2,WSE 2),7,8六角硼硝酸盐,9 mxenes(例如,过渡金属碳化物和硝酸盐),10个黑磷,11和2d钙钛矿12,13已合成。其中,硅纳米片由于与当前基于SI的纳米技术的预期兼容性而引起了极大的关注。硅纳米片在石墨烯类似硅烯之间存在分歧,该石墨烯类似硅由混合的SP 2 /SP 3-杂化硅原子组成,14和氢末端的石墨烯的类似物,所谓的硅烷,SP 3-氢化硅原子。15作为SP 3-杂交对硅的有利,16硅不稳定,因此仅在底物上外恋生长,例如,AG(111)或IR(111)。17 - 22通过在低温下用浓盐酸从ZINTL二相钙(CASI 2)从ZINTL相(CASI 2)的钙阳离子去钙阳离子来制备更稳定的硅硅烷(氢终止的硅质,SINS-H)。6 Sins-H具有独特的电子,机械和光学特性。根据理论研究,SINS-H是一种半导体材料23,具有应变带隙,24,25,而其原子
另一方面,建立的商业滤清器类型采用聚合物中空纤维模块,例如聚乙醚 - 磺基(PES)。这些成本效率的模块被广泛用于微滤。一个典型的过滤器由数百个空心纤维组成(HF,图1a - c)亚毫米直径(在我们的案例研究中为300μm)和纳米侧孔,确定整个模块切割(在我们的案例研究中150 nm)。在标准的跨流过滤模式下,进料溶液在纤维内流动,纯化的水从侧面表面孔中脱离纤维段,如图1d和e。最近,我们证明了具有GO的涂层PES纤维的可行性,从而导致复合双层膜(HF-GO,图。1d和e)。该膜保留了PES-HF的微丝膜性能,同时还可以使小有机分子的吸附。通过在吸附前后通过X射线差异(XRD)分析确认,吸附是通过分子在堆叠的GO层之间的插入而发生的。32
在这项工作中,我们阐明了这种积累的物种可以对催化剂的表面形态具有很强的影响。我们通过AP-XPS和扫描隧道显微镜(STM)分析了在二氧化碳氢化条件下累积基于碳的污染对模型银箔的影响。是从对复杂催化剂进行的研究中知道的二氧化碳氢化(例如Cu/ZnO/Al 2 O 3),即过渡金属分离地吸附氢。二氧化碳主要被吸附在ZnO/Al 2 O 3相或其与铜的接口上。14,16基于这些观察结果,我们将氧化锌纳米颗粒添加到银基质中,增加了催化剂的复杂性,并越来越接近工业中使用的双功能cactalysts的结构。目标是研究氧化物存在下碳污染的稳定性和演变。结果表明,银表面结构高度依赖于反应条件。无氧碳种类倾向于装饰和销钉银台阶,而在存在氧化锌纳米颗粒的情况下观察到的氧气含氧碳种类与台阶边缘的相互作用较少,并且不会在特定的表面位点积聚。这些结果阐明了金属与氧化物二氧化碳氢化催化剂中的相互影响。
在碳2D纳米结构中调整量子运输的能力是迈向未来实现碳纳米电子和旋转型的关键步骤。尽管在实现具有不同电子特性的多种碳纳米材料中取得了巨大进展,但对于如何将这种多功能性转化为可调传输特性的多功能性知之甚少。在这里,通过有效的量子传输模拟,我们证明了化学修饰的纳米多孔石墨烯(NPGS)允许对平面量子运输的有效控制:也就是说,控制电荷的首选方向的控制。具体,我们首次发现,NPG中固有的量子转运各向异性不仅生存,而且在静电障碍条件下增强,这对于其在真实设备中的技术适用性至关重要。此外,对于特定的化学调谐NPG,我们表明各向异性变得巨大,这意味着运输只能沿着一个平面方向进行。因此,我们的结果为具有原子精度的碳2D纳米结构中的工程量子传输提供了一般配方,从而在2D材料领域开放了新的途径。