通常称为5CB,4-甲氧-4'-戊苯基是具有化学式C18H19N的列液晶体。它首先由乔治·威廉·格雷(George William Gray),肯·哈里森(Ken Harrison)和J.A.合成。纳什(Div> Nash)于1972年在赫尔大学(University of Hull),当时是氰基苯基的第一位成员。[1] [2] 5CB分子在22.5°C下从晶体到列相的相变长20Å,并在35.0°C下从列中到同性恋态。尽管由于其低过渡温度向各向同性及其狭窄的列相范围而不适合LCD,但它仍然是基础研究中最常用的列表之一。这是阳性介电各向异性材料的参考材料之一,并且可用的物理数据量最多。碳纳米管是由滚动石墨烯片制成的管状结构。作为许多纳米颗粒,对它们进行了研究,以便在其他材料中使用和插入以改善其电气[3-5]或生物学[6]特性,但也作为光电和磁化器件中高级材料的掺杂剂[7-12]。,为了适当使用,必须将它们作为单个颗粒作为单个颗粒进行研究,而不是像它们表现出完全不同的行为的大部分。许多
抽象将平滑等距沉浸式列表聚合物网络的薄板的弹性自由能最小化是主流理论所声称的策略。在本文中,我们拓宽了可允许的自发变形类别:我们考虑脊层浸入式浸入,这可能会导致浸入浸入的表面尖锐的山脊。我们提出了一个模型,以计算沿此类山脊分布的额外能量。这种能量来自弯曲;在什么情况下,它显示出与薄板的厚度四相缩放,落在拉伸和弯曲能量之间。,我们通过研究磁盘的自发变形,将径向刺猬的自发变形置于测试中。我们预测了外部试剂(例如热量和照明)在材料中诱导的材料诱导的顺序程度而发展的褶皱数量。
自旋向列相是经典液晶的磁性类似物,是同时具有液体和固体特性的第四种物质状态 1,2 。特别有趣的是价键自旋向列相 3-5 ,其中自旋量子纠缠形成多极序而不会破坏时间反演对称性,但其明确的实验实现仍然难以实现。在这里,我们在方晶格铱酸盐 Sr 2 IrO 4 中建立了自旋向列相,其在强自旋轨道耦合极限下近似实现伪自旋二分之一海森堡反铁磁体 6-9 。冷却后,在 TC ≈ 263 K 时转变为自旋向列相,其特点是从拉曼光谱中提取的静态自旋四极子磁化率发生发散,并伴随与旋转对称性自发破缺相关的集体模式的出现。四极序在 TN ≈ 230 K 以下的反铁磁相中持续存在,并通过共振 X 射线衍射与反铁磁序的干涉而直接观察到,这使我们能够唯一地确定其空间结构。此外,我们发现利用共振非弹性 X 射线散射在短波长尺度上完全破坏了相干磁振子激发,这表明反铁磁态中存在多体量子纠缠 10,11 。总之,我们的结果揭示了 Néel 反铁磁体背后的量子序,人们普遍认为它与高温超导机制密切相关 12,13 。
rmf&fu,物理。修订版Lett。 127,047001(2021)Gali&Rmf,物理。 修订版 b 106,094509(2022)Hecker,Willa,Schmalian和Rmf,Phys。 修订版 b 107,224503(2023)Lett。127,047001(2021)Gali&Rmf,物理。修订版b 106,094509(2022)Hecker,Willa,Schmalian和Rmf,Phys。修订版b 107,224503(2023)
我们报道了最佳掺杂三斜铁的超级电阻器的准颗粒松弛动力学(Ca 0。85 LA 0。 15)10(pt 3 as 8)(fe 2 as 2)5,使用极化超快光泵探针光谱法t c = 30 k。 我们的结果揭示了夜间闪光引起的各向异性瞬态反射性在超过120 K以下,并且在超导状态下持续存在。 高泵功能下的测量值分别以1.6、3.5和4.7 THz的频率显示出三种不同的,相干的声子模式,分别对应于1 g(1),E G和A 1 g(2)模式。 高频A 1 g(2)模式对应于具有标称电子耦合常数λa 1 g(2)= 0的feas平面的C轴极化振动。 139±0。 02。 我们的结果表明,在低温下,超导状态和列表状态共存但相互竞争,并且有可能与1 g的声子与库珀对形成(Ca0。>)的形成。 85 LA 0。 15)10(pt 3 as 8)(fe 2 as 2)5。85 LA 0。15)10(pt 3 as 8)(fe 2 as 2)5,使用极化超快光泵探针光谱法t c = 30 k。我们的结果揭示了夜间闪光引起的各向异性瞬态反射性在超过120 K以下,并且在超导状态下持续存在。高泵功能下的测量值分别以1.6、3.5和4.7 THz的频率显示出三种不同的,相干的声子模式,分别对应于1 g(1),E G和A 1 g(2)模式。高频A 1 g(2)模式对应于具有标称电子耦合常数λa 1 g(2)= 0的feas平面的C轴极化振动。139±0。02。我们的结果表明,在低温下,超导状态和列表状态共存但相互竞争,并且有可能与1 g的声子与库珀对形成(Ca0。85 LA 0。 15)10(pt 3 as 8)(fe 2 as 2)5。85 LA 0。15)10(pt 3 as 8)(fe 2 as 2)5。
列中阶段缺乏翻译顺序,但具有方向顺序。nematic阶段已经在各种系统中发现,包括液晶,相关材料和超导体。在这里,我们报告了磁性列相,其中基部成分由磁性螺旋组成。我们使用谐振软X射线散射直接探测与磁性螺旋相关的阶参数,并找到具有复杂时空特征的两个不同的列型相。使用X射线相关光谱法,我们发现两个列型相之间的相边界附近,波动在多个不同的时间尺度上共存。我们的微磁模拟和密度功能理论计算表明,波动随着磁性螺旋的重新定位而发生的,表明自发对称性破裂和新的自由度的出现。我们的结果为表征外来阶段的框架提供了一个框架,可以扩展到广泛的物理系统。
我们基于手性铁电列相(n f ∗)提出了液晶激光器装置。激光培养基是通过将铁电列材料与手性剂和一小部分荧光染料混合而获得的。值得注意的是,在N f ∗相中,非常低的电场垂直于螺旋轴能够重新定位分子,从而产生了一个周期性结构,其导演不是单个谐波,但包含各种傅立叶成分的贡献。此功能诱导了几个光子带盖的外观,这些光子带镜的光谱范围取决于磁场,可以利用该磁场来构建可调激光设备。在这里,我们报告了可以在低电场下进行调谐的自制n f ∗激光器的表征,并在材料的两个光子带中呈现激光作用。获得的结果为设计新的和更通用的液晶激光器设计开辟了有希望的途径。
引起了人们对不对称的Fabry -Pérot(FP)腔的重新兴趣,也称为Gires -Tournois谐振器。它们由一个光学厚和一个具有光学薄的金属镜来构成,光可以进入结构。这些光学元素以其在共鸣和增强所选波长上的光与肌电相互作用方面的易用性和有效性而闻名。[4,6,7]在FP谐振器中实现动态调谐的一般策略是,通常通过动态可调的材料(例如graphene)替换镜子之间通常位于镜子之间的被动绝缘体,[11-13]相位变化镁,[14]通过电流聚合物[14]通过(15]液晶(LCS)[16-18] [16-18] [16-18] [16-18] [16-18] [16-18][22]几项作品表明,在腔体中掺入的吲哚丁基氧化物的电控阳性促进了光吸收[12,19]的控制及其在中边缘[20]和近膜中的反射阶段。[21]其他研究利用了氧化氧化物[23]和聚合物[24-26],其纳米结构可调节所得的反射颜色。研究人员表明,掺杂危险的氧化锌[27]和氧化铝[28]的光学泵送允许在亚皮秒级方向上进行超快调节腔共振。也可以通过轻压以非惯性方式来实现[29]液体电解质中纳米颗粒的自组装[30]和相可可的元摩擦剂。[31]为了降低制造复杂性,多种响应材料
我们基于手性铁电列相(n f ∗)提出了液晶激光器装置。激光培养基是通过将铁电列材料与手性剂和一小部分荧光染料混合而获得的。值得注意的是,在N f ∗相中,非常低的电场垂直于螺旋轴能够重新定位分子,从而产生了一个周期性结构,其导演不是单个谐波,但包含各种傅立叶成分的贡献。此功能诱导了几个光子带盖的外观,这些光子带镜的光谱范围取决于磁场,可以利用该磁场来构建可调激光设备。在这里,我们报告了可以在低电场下进行调谐的自制n f ∗激光器的表征,并在材料的两个光子带中呈现激光作用。获得的结果为设计新的和更通用的液晶激光器设计开辟了有希望的途径。
量子点(QD)在液晶(LC)培养基中的分散可以有效地修改其介电和电光特性,这些特性在基于LC的显示以及非放置应用程序中很有用。在这里,我们报道了钙钛矿量子点(PQD)掺杂对列液晶(NLC)材料的介电性能的影响,即Zli-1565在其整个列和各向同性相。纯NLC的介电参数及其具有PQD的复合材料(0.1 wt。%,0.25 wt。%和0.5 wt。%)。与纯NLC相比,由于移动离子密度的增长,复合材料的介电介电常数(ɛʹ)和介电损耗(ɛʺ)的值增加。纯NLC的损耗因子(tanδ)的光谱峰随着PQD的添加向高频区域移动。此外,还评估了纯NLC和0.25 wt。%PQDS-NLC复合材料的温度依赖性介电参数(即最佳浓度)。此外,还评估了纯样品和0.25 wt。%复合材料的介电性各向异性和阈值电压。与纯净NLC相比,这里要注意的一点是,与纯NLC相比,清除温度(T n-I)的复合材料的清除温度(T N-I)减少了4°C。在这种PQDS-NLC复合材料上获得的结果可用于具有可调介电特征的基于NLC的电气设备。