Loading...
机构名称:
¥ 1.0

由于依赖时间密集型且不可扩展的专家评估,脑瘫(CP)的早期鉴定仍然是一个重大挑战。因此,一系列研究旨在通过机器学习来预测基于运动跟踪的CP分数,例如从视频数据中。这些研究通常可以预测临床评分,这是CP风险的替代。但是,临床医生并不想估计分数,他们想估计患者患临床症状的风险。在这里,我们提出了一个数据驱动的机器学习(ML)管道,该管道从基于婴儿视频的运动跟踪中提取运动功能,并估算使用自动符号的CP风险。使用AutoSklearn,我们的框架通过抽象研究人员 - 驱动器超参数优化来最大程度地拟合过度适应的风险。接受了从3至4个月大的婴儿进行运动数据的培训,我们的分类器预测在持有的测试集中,ROC-AUC的高度指示性临床评分(General运动评估[GMA]),表明运动学运动特征临床相关的可变性。没有再培训,相同的模型可以预测在后来的临床随访中,ROC-AUC为0.74,脑瘫结局的风险,表明早期运动表现形式概括为长期神经发育风险。我们采用预注册的锁定箱验证来确保索具性能评估。本研究强调了自动驱动运动分析对神经发育筛查的潜力,这表明数据驱动的运动轨迹提取的特征可以为早期风险评估提供可解释且可扩展的方法。通过整合预先训练的视频变压器,自动驱动的模型选择和严格的验证协议,这项工作可以推进使用视频衍生的运动功能来用于可扩展的,数据驱动的临床评估,从而证明基于可用的数据(如婴儿)(如婴儿)的计算方法如何增强神经发育障碍的早期风险检测。

数据驱动的早期预测脑瘫,使用汽车和可解释的运动学特征

数据驱动的早期预测脑瘫,使用汽车和可解释的运动学特征PDF文件第1页

数据驱动的早期预测脑瘫,使用汽车和可解释的运动学特征PDF文件第2页

数据驱动的早期预测脑瘫,使用汽车和可解释的运动学特征PDF文件第3页

数据驱动的早期预测脑瘫,使用汽车和可解释的运动学特征PDF文件第4页

数据驱动的早期预测脑瘫,使用汽车和可解释的运动学特征PDF文件第5页

相关文件推荐