抽象注意力缺陷多动症(ADHD)是一种神经发育多基因疾病,影响了世界各地5%以上的儿童和青少年。遗传和环境因素在ADHD病因中起着重要作用,这导致了整个人群中广泛的临床结果和生物学表型。与同龄人的对照相比,患者通常发现了4年滞后的大脑成熟延迟。细胞生长率的可能差异可能反映了多动症患者的临床观察结果。但是,仍未阐明细胞机制。为了检验这一假设,我们分析了诱导多能干细胞(IPSC)和神经干细胞(NSC)的增殖,这些细胞(NSC)源自男性儿童和诊断为ADHD的男孩和青少年(使用多基因风险评分评估),以及其相应的对照组。在当前的试点研究中,值得注意的是,ADHD组的NSC繁殖小于对照,而在IPSC发育阶段没有发现差异。我们来自两种不同的增殖方法的结果表明,患者发现的功能和结构延迟可能与这些体外表型差异有关,但从明显的神经发育阶段开始。这些发现是多动症疾病建模领域的第一个发现,对于更好地了解该疾病的病理生理可能至关重要。
抽象的生物电子医学通过感测,处理和调节人体神经系统中产生的电子信号(被标记为“神经信号”)来治疗慢性疾病。虽然电子电路已经在该域中使用了几年,但微电子技术的进展现在允许越来越准确且有针对性的解决方案以获得治疗益处。例如,现在可以在特定神经纤维中调节信号,从而靶向特定疾病。但是,要完全利用这种方法,重要的是要了解神经信号的哪些方面很重要,刺激的效果是什么以及哪些电路设计可以最好地实现所需的结果。神经形态电子电路代表了实现这一目标的一种有希望的设计风格:它们的超低功率特征和生物学上可行的时间常数使它们成为建立最佳接口到真正神经加工系统的理想候选者,从而实现实时闭环与生物组织的闭环相互作用。在本文中,我们强调了神经形态回路的主要特征,这些电路非常适合与神经系统接口,并展示它们如何用于构建闭环杂种人工和生物学神经加工系统。我们介绍了可以实施神经计算基础的示例,以对这些闭环系统中感应的信号进行计算,并讨论使用其输出进行神经刺激的方法。我们描述了遵循这种方法的应用程序的示例,突出了需要解决的开放挑战,并提出了克服当前局限性所需的措施。
最佳运输,也称为运输理论或Wasserstein指标,是一个数学框架,它解决了找到最有效的方法将质量或资源从一个分布转移到另一种分布的最有效方法的问题,同时最大程度地减少了一定的成本函数[1,2,3]。最初在18世纪作为物流和经济学工具开发,最佳运输在现代数学和各种科学学科(包括计算机科学和机器学习)上引起了极大的关注。在其核心方面,最佳运输旨在通过找到将一个分布的质量重新分配以匹配另一个位置的成本,从而量化两个概率分布之间的相似性。这个优雅而多才多艺的概念在不同领域中发现了从图像处理和数据分析到经济学[11]和神经科学的应用,使其成为具有广泛含义的强大而统一的数学工具[12]。
要获得癫痫发作的自由,癫痫手术需要完全切除癫痫脑组织。在术中电视学(ECOG)记录中,癫痫组织产生的高频振荡(HFO)可用于量身定制切除缘。但是,实时自动检测HFO仍然是一个开放的挑战。在这里,我们提出了一个尖峰神经网络(SNN),用于自动HFO检测,最适合神经形态硬件实现。我们使用独立标记的数据集(58分钟,16个记录),训练了SNN,以检测从术中ECOG测量的HFO信号。我们针对快速连锁频率范围(250-500 Hz)中HFO的检测,并将网络结果与标记的HFO数据进行了比较。我们赋予了SNN新型的伪影排斥机制,以抑制尖锐的瞬变并证明其在ECOG数据集中的有效性。该SNN检测到的HFO速率(中位数为6.6 HFO/ min)与数据集中发布的HFO率(Spearman'sρ= 0.81)相当。所有8例患者的术后癫痫发作结果被“预测”为100%(CI [63 100%])的精度。这些结果为建造实时便携式电池式HFO检测系统提供了进一步的一步,该检测系统可在癫痫手术期间使用,以指导癫痫发作区的切除。
森林在地面碳循环中至关重要,并且对它们对持续气候变化的反应的了解对于确定未来的碳浮动和气候轨迹至关重要。在具有对比季节的区域,树木形成可以分配给日历年的离散年环,从而可以提取有关树木对环境的反应的宝贵信息。木材的解剖结构提供了有关树木对气候的反应和适应的高度分辨信息。定量木材解剖结构有助于通过使用木材微剖面的高分辨率图像在细胞水平上测量木材来检索这些信息。然而,尽管在识别细胞结构方面已经取得了很大的进步,但获得有意义的细胞信息仍然受图像上正确的年度树环界定的阻碍。这是一项耗时的任务,需要经验丰富的操作员手动界定环边界。基于像素值的自动分割的经典方法正在用能够区分结构的新方法代替,即使分界需要高水平的专业知识。尽管已使用神经网络进行木环的分割,但木制的木材图像,但阔叶物种染色的微观切片中细胞模式的复杂性需要自适应模型才能准确地完成此任务。我们在山毛榉核心染色的横截面微隔板图像上使用神经网络提出了自动树环边界划定。基于卷积神经网络的应用我们训练了一个UNETR,一个UNET的联合神经网络和视觉变压器的注意机制,以自动分段年度环边界。考虑到具有手动分割的差异以及数量木材解剖学分析目标的差异以及差异的后果。在大多数情况下(91.8%),自动分割匹配或改进了手动细分,即使将手动细分视为更好的情况,两种类别之间的船只分配率也相似。
人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
神经程序是高度准确且结构化的策略,可以通过控制计算机制的行为来执行算法 - MIC任务。尽管有可能增加人工剂的行为的解释性和组成性,但仍很难从代表计算机程序的演示神经网络中学习。与其他模仿学习域不同的设定算法的主要挑战是需要高精度,数据的特定结构的参与以及极为有限的观察力。为了应对这些挑战,我们建议将程序建模为参数化的层次结构程序(PHP)。php是一系列条件操作,使用程序计数器以及观察结果,在采取基本操作,将另一个PHP作为子处理和返回呼叫者之间进行选择。我们开发了一种从一组主管演示中培训PHP的算法,其中只有一些用内部呼叫结构注释,并将其应用于对多级PHP的有效水平培训。我们以两个基准(纳米司法机构和长局添加)的形式显示,PHP可以从较小量的注释和未经通知的示范中更准确地学习神经程序。
本文提出了一种非迭代训练算法,用于在自学习系统中应用节能的 SNN 分类器。该方法使用预处理间脑丘脑中典型的感觉神经元信号的机制。该算法概念基于尖点突变模型和路由训练。该算法保证整个网络中连接权重值的零分散,这在基于可编程逻辑器件的硬件实现的情况下尤为重要。由于非迭代机制受到联想记忆训练方法的启发,该方法可以估计网络容量和所需的硬件资源。训练后的网络表现出对灾难性遗忘现象的抵抗力。该算法的低复杂度使得无需使用耗电的加速器即可进行现场硬件训练。本文将该算法的硬件实现的复杂性与经典的 STDP 和转换程序进行了比较。该算法的基本应用是配备视觉系统并基于经典 FPGA 设备的自主代理。
摘要 人类免疫缺陷病毒 1 型 (HIV-1) 感染对其人类宿主具有高度特异性。为了研究 HIV-1 对人类神经系统的感染,我们建立了一种小动物模型,其中将妊娠中期 (11 至 17.5 周) 的人类胎儿大脑或神经视网膜移植到免疫抑制成年大鼠的前房。人类异种移植血管化,形成血脑屏障,并分化形成神经元和神经胶质细胞。异种移植感染了无细胞 HIV-1 或 HIV-1 感染的人类单核细胞。聚合酶链反应分析显示,暴露于 HIV-1 病毒体的异种移植组织的 DNA 中存在 HIV-1 序列,原位杂交显示 HIV-1 mRNA 位于巨噬细胞和多核金细胞中。仅在含有 HIV-1 感染的人类单核细胞的神经异种移植中观察到病理损伤,支持了这些细胞介导神经毒性的假设。这种小动物模型可用于研究 HIV-1 感染对正在发育的人类胎儿神经组织的直接和间接影响,并且应可用于评估最终必须针对大脑 HIV-1 感染的抗病毒疗法。