可区分的神经计算机(DNC)在解决复杂问题方面具有显着的功能。在本文中,我们建议将增强的可区分神经计算机堆叠在一起,以扩展其学习能力。首先,我们对DNC进行了直观的解释,以解释建筑本质,并通过将其与常规的经常性神经网络(RNN)进行对比,证明了堆叠的可行性。其次,提出并修改了堆叠DNC的架构以进行脑电图(EEG)数据分析。我们将原始的长期记忆(LSTM)网络控制器替换为经常性的卷积网络控制器,并调整用于处理EEG EEG地形数据的内存访问结构。第三,我们提出的模型的实用性由开源的EEG数据集验证,其平均精度最高;然后,在微调参数后,我们显示了在专有EEG数据集上获得的最小平均误差。最后,通过分析训练有素的堆叠DNCS模型的行为特征,我们强调了在EEG信号处理中利用堆叠的DNC的适当性和潜力。
主要关键词