雷特综合征 (RTT) 是一种 X 连锁神经发育障碍,由年轻女性 X 染色体上的甲基 CpG 结合蛋白 2 ( MECP2 ) 的功能丧失杂合突变引起。从失活的 X 染色体 (Xi) 重新激活沉默的野生型 MECP2 等位基因代表着对女性 RTT 患者的一个有希望的治疗机会。在这里,我们应用了一种多重表观基因组编辑方法,从 RTT 人胚胎干细胞 (hESC) 和衍生的神经元中重新激活 Xi 中的 MECP2。通过 dCas9-Tet1 和靶向单向导 RNA 对 MECP2 启动子进行去甲基化,从 RTT hESC 中的 Xi 重新激活 MECP2,而在转录水平上没有可检测到的脱靶效应。来自甲基化编辑的 RTT hESC 的神经元维持了 MECP2 的再激活,并逆转了 RTT 的两个特征:体细胞尺寸变小和电生理异常。在 RTT 神经元中,通过 dCpf1-CTCF(与 CCCTC 结合因子融合的催化死亡 Cpf1)和靶 CRISPR RNA 隔离甲基化编辑的 MECP2 基因位点可增强 MECP2 的再激活并挽救 RTT 相关的神经元缺陷,为表观基因组编辑治疗 RTT 和其他潜在的显性 X 连锁疾病提供了概念验证研究。
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 12 月 24 日发布。;https://doi.org/10.1101/2022.05.12.491630 doi:bioRxiv 预印本
在复杂环境中定位声源的能力对于通信和导航至关重要。空间听证会主要依赖于两只耳朵之间声音到达时间的差异的比较,即播出时间差异(ITD)。听力障碍对声音本地化非常有害。尽管人工耳蜗(CIS)成功地恢复了许多关键的听力能力,但通过ITD检测与双边顺式合理的定位仍然很差。根本原因尚不清楚。神经元,ITD敏感性是通过专门的脑干神经元进行的两只耳朵的兴奋性和抑制输入之间的巧合检测而产生的。由于在CI刺激过程中缺乏电生理学脑干记录,目前尚不清楚在多大程度上是由双耳比较神经元引起的,或者已经在输入水平上引起。在这里,我们使用自下而上的方法比较CI听力动物模型中电气和声学刺激之间的响应特征。在Gerbils中进行细胞外单神经元记录,我们发现在电脉冲刺激期间,兴奋性和抑制性脑干输入对双耳比较神经元的兴奋性和抑制性脑干输入中等高度渗透性。这一发现确定,双耳处理阶段必须应对CI刺激期间的输入统计量的高度变化。为了估计这些影响对ITD灵敏度的后果,我们使用了听觉脑干的计算模型。调整模型参数以使其响应特性与我们在任何一种刺激类型期间的生理数据相匹配时,该模型预测,即使对于超专有输入,也可以保持对电脉冲的敏感性。然而,与声学相比,该模型在电刺激过程中表现出严重改变的空间敏感性:
相应的作者Dietmar R.神经病理学的Thal实验室O&N IV Hestraat 49 -Bus 1032 3000 Leuven Tel。:0032/16/3-44047电子邮件地址:dietmar.thal@kuleuven.be
吉布森的可供性概念是指环境提供的、生物体能够采取行动的机会。整整十年后,在恒河猴身上发现的镜像神经元 (MN) 表明,运动序列最好被视为动作(抓握),因为它们是由高级目标(如吃食物)而不是效应器的物理特性来组织的。可供性的概念可能会引起 MN 研究人员的共鸣,因为它符合以下观点:运动被组织为整体,而这种整体最好由代理的意图而不是独立于代理的物理属性来定义。最近,Bonini 等人 [1] 将 MN 研究(关于物理世界中的工具性行为)扩展到社会互动,并将 MN 与社会可供性框架联系起来,将同种(“他人”)的感知置于中心。 MN 和社会可供性理论因缺乏清晰度而受到批评 [ 2 ]:将它们结合起来是否有望在理解社会大脑方面向前迈进一步?
摘要在过去十年中,通过应用新技术,我们对神经疾病的理解得到了极大的增强。全基因组关联研究已突出了神经胶质细胞作为疾病的重要参与者。单细胞分析技术正在以未注明的分子分辨率提供神经元和神经胶质疾病状态的描述。然而,我们对驱动疾病相关的细胞态的机制以及这些状态如何促进疾病的机制仍然存在巨大差距。我们理解中的这些差距可以由基于CRISPR的功能基因组学桥接,这是一种有力的系统询问基因功能的方法。在这篇综述中,我们将简要回顾有关神经疾病相关的细胞态的当前文献,并引入基于CRISPR的功能基因组学。我们讨论了基于CRISPR的筛查的进步,尤其是在相关的脑细胞类型或细胞环境中实施时,已经为发现与神经系统疾病相关的细胞状态的机制铺平了道路。最后,我们将描述基于CRISPR的功能基因组学的当前挑战和未来方向,以进一步了解神经系统疾病和潜在的治疗策略。
1 克雷姆比尔神经信息学中心,成瘾和精神健康中心,加拿大安大略省多伦多,M5T 1R8 2 克雷姆比尔脑研究所,大学健康网络,加拿大安大略省多伦多,M5T 1M8 3 多伦多大学特默蒂医学院医学科学研究所,加拿大安大略省多伦多,M5S 1A8 4 推进神经技术创新应用中心(CRANIA),加拿大安大略省多伦多,M5S 1A4 5 多伦多大学外科系,神经外科分部,加拿大安大略省多伦多,M5T 1P5 6 多伦多大学生物医学工程研究所,加拿大安大略省多伦多,M5S 3G9 7 多伦多大学电气和计算机工程系,加拿大安大略省多伦多,M5S 3G8 8 马克斯普朗克 - 多伦多大学神经科学与技术中心,加拿大安大略省多伦多,M5S 1A4 9 中心促进神经技术创新应用(CRANIA)的加拿大多伦多大学精神病学系, ...
5 Rancho Los Amigos 国家康复中心,美国加利福尼亚州唐尼 90242 *主要联系人:skwandelt@caltech.edu 摘要:语音脑机接口 (BMI) 将脑信号转换成单词或音频输出,使因疾病或受伤而失去语言能力的人们能够进行交流。虽然在发声、尝试和模仿语音解码方面已经取得了重要进展,但内部语音解码的成果却很少,而且尚未实现很高的功能性。值得注意的是,目前仍不清楚可以从哪些大脑区域解码内部语音。在这项工作中,一名四肢瘫痪的参与者在边缘上回 (SMG) 和初级体感皮层 (S1) 植入了微电极阵列,该参与者进行了六个单词和两个伪词的内部和发声语音转换。我们发现 SMG 单神经元活动具有强大的内部语音解码能力,在在线任务中分类准确率高达 91%(偶然水平 12.5%)。发现内部语音、单词阅读和发声语音过程之间存在共享神经表征的证据。SMG 表示不同语言(英语/西班牙语)的单词以及伪词,为语音编码提供了证据。此外,我们的解码器通过多种内部语音策略(听觉想象/视觉想象)实现了高分类。S1 中的活动受发声语音而非内部语音的调节,这表明在内部语音生成过程中没有发生声道的发声器运动。这项工作代表了高性能内部语音 BMI 的第一个概念验证。
摘要 反复接触滥用药物会导致中脑边缘多巴胺系统中 cAMP 信号的上调,这种分子适应被认为与药物依赖的发展密切相关。由 cAMP 直接激活的交换蛋白 (Epac2) 是一种在大脑中大量表达的主要 cAMP 效应物。然而,Epac2 是否有助于可卡因强化仍不清楚。在这里,我们报告说,中脑边缘多巴胺系统中的 Epac2 通过增强多巴胺释放来促进可卡因强化。在固定比率和渐进比率强化方案下以及在广泛的可卡因剂量范围内,从中脑多巴胺神经元中条件性敲除 Epac2 (Epac2-cKO) 和选择性 Epac2 抑制剂 ESI-05 降低了小鼠的可卡因自我给药。此外,Epac2-cKO 导致诱发的多巴胺释放减少,而 Epac2 激动剂在体外强烈增强了伏隔核中的多巴胺释放。这种机制是 Epac2 破坏行为效应的核心,因为通过脱氯氯氮平 (DCZ) 诱导的 Gs-DREADD 激活对腹侧被盖区 (VTA) 多巴胺神经元进行化学遗传刺激会增加多巴胺释放并逆转 Epac2-cKO 小鼠的可卡因自我给药障碍。相反,用 Gi-DREADD 对 VTA 多巴胺神经元进行化学遗传抑制会减少野生型小鼠的多巴胺释放和可卡因自我给药。因此,Epac2 介导的多巴胺释放增强可能代表一种有助于可卡因强化的新型强大机制。