青少年饮酒与成人酒精问题和酒精使用障碍(AUD)的高率有关。成年(NADIA)青少年间歇性乙醇(AIE)在青少年暴饮暴食中饮酒的神经生物学,随后段落成熟到成年期,以确定神经生物学和行为的持续变化。aie增加了成人饮酒和偏爱,增加了焦虑和奖励,并破坏了睡眠和认知,所有这些风险都是aud的风险。此外,AIE诱导了改变神经记录和行为的神经元和神经胶质中神经免疫基因表达的变化。HMGB1是一种从神经元和乙醇释放的独特神经免疫信号,激活了多种促进性敏感受体,包括收费受体(TLR),它们会传播促进性敏感性基因诱导。HMGB1的表达通过大鼠脑和验尸后的AUD大脑中的AIE增加,与寿命饮酒相关。HMGB1 TLR激活增加TLR表达。 AIE后的人类AUD脑和大鼠大脑显示多个TLR的增加。 神经递质和细胞类型的大脑区域差异会影响乙醇反应和神经免疫基因诱导。 小胶质细胞是单核细胞样细胞,提供营养和突触功能,在反复的饮用周期中,乙醇促进的信号敏感或“素”,从而影响神经记录。 神经回路受到神经元信号传导的影响不同。 乙酰胆碱是一种抗炎性神经递质。 基因表达转录组的这些变化导致成人减少HMGB1 TLR激活增加TLR表达。AIE后的人类AUD脑和大鼠大脑显示多个TLR的增加。 神经递质和细胞类型的大脑区域差异会影响乙醇反应和神经免疫基因诱导。 小胶质细胞是单核细胞样细胞,提供营养和突触功能,在反复的饮用周期中,乙醇促进的信号敏感或“素”,从而影响神经记录。 神经回路受到神经元信号传导的影响不同。 乙酰胆碱是一种抗炎性神经递质。 基因表达转录组的这些变化导致成人减少AIE后的人类AUD脑和大鼠大脑显示多个TLR的增加。神经递质和细胞类型的大脑区域差异会影响乙醇反应和神经免疫基因诱导。小胶质细胞是单核细胞样细胞,提供营养和突触功能,在反复的饮用周期中,乙醇促进的信号敏感或“素”,从而影响神经记录。神经回路受到神经元信号传导的影响不同。乙酰胆碱是一种抗炎性神经递质。基因表达转录组的这些变化导致成人AIE通过上调RE-1沉默因子(REST)(一种转录抑制剂,已知的转录抑制剂,已知的转录神经元分化,通过上调多种胆碱能定义的基因来增加前脑中的HMGB1-TLR4信号传导,从而减少了胆碱能神经元。HMGB1静电诱导减少了海马基底前脑和胆碱能神经的胆碱能神经元。成年脑海马神经发生由由多个细胞形成的神经源性生殖位调节。体内AIE和体外研究发现乙醇会增加HMGB1-TLR4信号传导和其他促进性信号传导,以及还原营养因子,NGF和BDNF,与胆碱能突触标记VCHAT的丧失相一致。
在发育过程中,不同的组织获得了与组织功能和稳态耦合的不同脂肪型。在大脑中,神经功能,特定的甘油磷脂,鞘脂,鞘脂和胆固醇需要复杂的膜传输系统,高度丰富,脂质代谢有缺陷与异常的神经发育和神经降解性疾病有关。值得注意的是,特定脂肪型的生产需要在开发过程中适当的基础脂质代谢机械编程,但是何时何时且如何发生这种情况。为了解决这个问题,我们使用高分辨率MS所有脂肪组学来生成涵盖早期胚胎和产后阶段的小鼠脑发育的广泛时间分解资源。这在神经脂质型的建立中表现出了独特的双重作用,在该神经脂质型中,规范性脂质生物标志物22:6-甘油磷脂和18:0-少脂脂开始在子宫内产生,而胆固醇则在出生后具有特征性的高水平。使用资源作为参考,我们接下来研究了可以通过常用的方案来概括干细胞的体外神经元分化的方案。在这里,我们发现脂质代谢机械的编程是不完整的,而干细胞 - 衍生细胞只能在细胞培养基与脑特异性脂质前体融合时只能部分获得神经脂质型。总的来说,我们的工作为早期小鼠脑发育提供了广泛的脂质组资源,并在使用干细胞 - 衍生的神经元祖细胞时突出了潜在的警告,用于对脂质生物化学,膜生物学和生物物理学的机械研究,这些研究可以通过进一步优化的维多利亚分化协议来减轻,从而可以减轻这些研究。
帕金森氏病(PD)是一种与年龄相关的不可逆性神经退行性疾病,其特征在于,由于nigra nigra pars pars compacta(SNPC)的多巴胺能(DA)神经元的丧失引起的一种逐渐恶化的非自愿运动障碍。PD的两个主要病理生理特征是受影响神经元中包含体的积累,以及在Nigra pars compacta(SNPC)(SNPC)和氯肾上腺素(LC)中含有神经元素的DA神经元的主要丧失。包含体包含错误折叠和聚集的α-核蛋白(α -syn)纤维,称为刘易体。PD的病因和致病机制是复杂的,多维的,并且与环境,遗传和其他与年龄有关的因素的组合相关。尽管已经广泛研究了与PD的致病机制相关的个体因素,但尚未设想发现发现与统一的致病机制的整合。在这里,我们提出了一种基于当前可用的实验数据的独特的高代谢活性耦合的高代谢活性耦合的升高能量需求,提出了PD中SNPC和NE神经元变性的综合机制。所提出的假设机制主要基于这些神经元的独特高代谢活性升高的升高。我们认为,在PD中,SNPC和NE神经元中选择性的DA神经元的高脆弱性可能是由于细胞能量调节。这种细胞能量调节可能会引起这些神经元中氧化还原活性金属稳态(尤其是铜和铁)的DA和NE代谢失调。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月5日发布。 https://doi.org/10.1101/2022.05.05.05.490599 doi:Biorxiv Preprint
感觉神经元感知致病性浸润,以告知宿主38防御的免疫协调。然而,感官神经元免疫相互作用主要显示为39驱动先天免疫反应。体内记忆,无论是保护性还是破坏性,在生命的早期就获得了40次获得,如早期暴露于链球菌和过敏性疾病发作所证明的那样。41我们的研究进一步定义了感觉神经元对肺部体液免疫的影响。42使用肺炎链球菌的鼠模型前暴露和感染,以及43种过敏性哮喘的模型,我们表明B细胞和血浆细胞44募集和抗体产生需要感觉神经元。对肺炎链球菌的响应,感觉神经元耗竭45导致细菌负担更大,B细胞群体减少,IgG释放和中性粒细胞46刺激。相反,在过敏原诱导的气道炎症过程中,感觉神经元耗竭降低了B细胞群体,IgE和47个哮喘特征。在每个模型中释放的感觉神经元48神经肽都不同。有细菌感染,优先释放了血管活性肠49多肽(VIP),而物质P则释放出对哮喘的反应50。将VIP施用到感官神经元缺失的小鼠中抑制了细菌51负担并增加了IgG水平,而VIP1R缺乏症增加了对细菌52感染的敏感性。用物质P处理的感官神经元缺乏的小鼠增加了IgE和哮喘,而物质P遗传消融导致IgE钝化,类似于感觉神经元缺乏的54次哮喘小鼠。58这些数据表明,免疫原差异刺激感觉55神经元释放特定的神经肽,这些神经肽是特异性靶向B细胞的。靶向感官56神经元可能会为57和/或加重的体液免疫提供的疾病提供替代治疗途径。
研究文章 | 疾病的神经生物学 来自患有功能获得和丧失的 SCN2A 发育性和癫痫性脑病的患者的 iPSC 衍生神经元中的独特体外表型 https://doi.org/10.1523/JNEUROSCI.0692-23.2023 收到日期:2023 年 4 月 17 日 修订日期:2023 年 11 月 7 日 接受日期:2023 年 11 月 9 日 版权所有 © 2023 作者
刺激神经元引起的刺激会引起直接与早期基因的转录,这一过程需要在几分钟内通过托泊异构体IIB产生的染色体DNA局部位点形成双链断裂(DSB),然后在几个小时内修复。清醒,探索新的环境以及上下文恐惧条件也引起了需要DSB和修复的突触基因的转折。已有报道(在非神经元细胞中),在修复位点时,在DSB上会形成外粒体圆形DNA。i提出,激活的神经元可能在DSB部位修复过程中会产生外圆形圆形DNA,从而产生该活性模式的持久“标记”,这些模式包含来自其原产地点的序列并调节长期基因表达。尽管外染色体外DNA的种群是多种多样的,并且总体上与病理学相关,该病理是一个小圆形DNA的子类(“ microdnas”,长约100-400个碱基),很大程度上源自独特的基因组序列,并且具有吸引人的吸引力,并且具有吸引人的特征,可作为稳定,移动圆形DNA,以调节基本表达序列中的序列化型(序列)。圆形DNA可以是RNA转录的模板,尤其是抑制性的siRNA,圆形RNA和其他与microRNA相互作用的非编码RNA。这些可能调节与突触可塑性,学习和记忆有关的其他基因的翻译和转录。移动DNA的另一个可能的命运是在响应随后的激活事件而生成新的DSB站点后,将稳定地插入染色体中。因此,将移动DNA插入活性引起的基因可能倾向于使它们失活并有助于稳态调节以避免过度激发,并为神经元的激活史提供了“计数器”。此外,激活的神经元释放分泌外泌体,可以转移到受体细胞中以调节其基因表达。可移动DNA可以包装到外泌体中,以活动依赖性方式释放,并转移到受体细胞中,在那里它们可能是调节性RNA的模板,并可能掺入染色体中。最后,衰老和神经退行性疾病(包括阿尔茨海默氏病)也与神经元中DSB的增加有关。将来要评估病理学与活动引起的移动DNA以及后者是否有可能有助于发病机理的病理学与活动有关。
研究文章|行为/认知混合选择性编码内容 - 时间细节由背部后壁神经元https://doi.org/10.1523/jneurosci.1677-23.2023收到:2023年9月5日收到:2023年10月27日接受:2023年10月1日接受:2023年11月1日接受:
沈伟达 1,6,∗ ,唐叶娇 1,2,6 ,杨菁 1,6 ,朱林静 1,6 ,周文 1 ,项丽阳 2 3,4 ,朱峰 1 ,董静银 1 ,谢逸程 5 ,曾令辉 1,∗ 3 4 1 杭州城市学院医学院浙江省神经修复新靶点与药物研究重点实验室,杭州 310015,浙江 6 2 浙江大学药学院毒理药理研究所,卫生部医学神经生物学重点实验室,杭州 310058,浙江 9 3 浙江省神经电子与脑机接口技术重点实验室,杭州 311121,浙江 11 4 南开大学医学院,天津 300071 12 5 浙江大学医学院儿童医院神经内科、国家儿童保健临床研究中心,杭州 310052,中国 15 16 17 6 这些作者对本文贡献相同。18 ∗ 通讯作者:曾令辉 (zenglh@hzcu.edu.cn),沈伟达 19 ( shenwd@hzcu.edu.cn ) 20
最近在梨状皮层(皮质不成熟神经元,CINS)的第二层中鉴定出了非出生的,产前产生的“未成熟”神经元,这提出了有关其维持或消耗的问题。大多数形式的大脑结构可塑性随着年龄的增长而逐渐下降,这是由于干细胞耗竭而在成人神经发生中特别突出的特征。在胚胎发生过程中产生了CIN的整个种群。然后,这些细胞只是在产后和成人阶段保留不成熟,直到它们“醒着”才能完成成熟并最终整合到神经回路中。因此,问题仍然是开放的,如果不依赖干细胞分裂的CIN是否可能遵循类似的与年龄相关的还原模式,或者在替代方面可能会留下成人和衰老大脑中的年轻,未分化的细胞的储层。在这里,通过使用免疫细胞化学用于细胞骨架标记doublecortin,在小鼠梨状皮层中分析了CIN的数量和特征。研究了CIN的丰度和成熟阶段,以及其他成熟/不成熟的标志物的表达。尽管在少年阶段,这种神经元种群显着下降,但让人联想到海马神经发生中观察到的神经元,但少量高度不成熟的CIN持续了高级年龄。总体而言,尽管随着年龄的增长而减少数量,但我们报告说,CIN存在于整个动物寿命中。