刺激神经元引起的刺激会引起直接与早期基因的转录,这一过程需要在几分钟内通过托泊异构体IIB产生的染色体DNA局部位点形成双链断裂(DSB),然后在几个小时内修复。清醒,探索新的环境以及上下文恐惧条件也引起了需要DSB和修复的突触基因的转折。已有报道(在非神经元细胞中),在修复位点时,在DSB上会形成外粒体圆形DNA。i提出,激活的神经元可能在DSB部位修复过程中会产生外圆形圆形DNA,从而产生该活性模式的持久“标记”,这些模式包含来自其原产地点的序列并调节长期基因表达。尽管外染色体外DNA的种群是多种多样的,并且总体上与病理学相关,该病理是一个小圆形DNA的子类(“ microdnas”,长约100-400个碱基),很大程度上源自独特的基因组序列,并且具有吸引人的吸引力,并且具有吸引人的特征,可作为稳定,移动圆形DNA,以调节基本表达序列中的序列化型(序列)。圆形DNA可以是RNA转录的模板,尤其是抑制性的siRNA,圆形RNA和其他与microRNA相互作用的非编码RNA。这些可能调节与突触可塑性,学习和记忆有关的其他基因的翻译和转录。移动DNA的另一个可能的命运是在响应随后的激活事件而生成新的DSB站点后,将稳定地插入染色体中。因此,将移动DNA插入活性引起的基因可能倾向于使它们失活并有助于稳态调节以避免过度激发,并为神经元的激活史提供了“计数器”。此外,激活的神经元释放分泌外泌体,可以转移到受体细胞中以调节其基因表达。可移动DNA可以包装到外泌体中,以活动依赖性方式释放,并转移到受体细胞中,在那里它们可能是调节性RNA的模板,并可能掺入染色体中。最后,衰老和神经退行性疾病(包括阿尔茨海默氏病)也与神经元中DSB的增加有关。将来要评估病理学与活动引起的移动DNA以及后者是否有可能有助于发病机理的病理学与活动有关。
主要关键词