未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2022 年 5 月 4 日发布。;https://doi.org/10.1101/2022.03.30.486457 doi:bioRxiv preprint
大脑功能依赖于脉冲神经元回路,其中突触在融合传输与记忆存储和处理方面发挥着关键作用。电子技术在模拟神经元和突触方面取得了重要进展,而将大脑和受大脑启发的设备连接起来的脑机接口概念也开始实现。我们报告了大脑和硅脉冲神经元之间的忆阻连接,这些连接模拟了真实突触的传输和可塑性。与金属薄膜氧化钛微电极配对的忆阻器将硅神经元连接到大鼠海马的神经元。忆阻可塑性解释了连接强度的调节,而传输则由通过薄膜氧化物的加权刺激介导,从而产生类似于兴奋性突触后电位的反应。反向大脑到硅的连接是通过微电极-忆阻器对建立的。在此基础上,我们展示了一个三神经元脑硅网络,其中忆阻突触经历由神经元放电率驱动的长期增强或抑制。
单光子光遗传刺激是神经科学中的关键工具,可以实现精确的、细胞类型特异性的神经回路调节。以完全可植入的宽场刺激器阵列的形式对这种技术进行小型化,可以在长期实验中询问皮质回路,并有望增强脑机接口以恢复感觉和运动功能。然而,对于基础科学和临床应用来说,这种技术必须达到在单列级别选择性激活感觉和运动表征所需的精度。然而,研究报告称,在受刺激的皮质区域内,神经元反应不同,有时甚至相互冲突。虽然循环网络机制会导致复杂的反应,但我们在这里证明,复杂性已经从神经元形态的层面开始。通过在第 2/3 层和第 5 层锥体神经元的详细模型中模拟光遗传反应,我们考虑了不同刺激强度下的真实生理动态,包括阈值、持续和去极化阻滞反应。我们的研究结果表明,皮质表面单个刺激器位置激活的神经元的空间分布可能不均匀,并且会随着刺激强度和神经元形态的变化而变化,这可能解释了早期实验中观察到的反应异质性。我们发现,由于神经元形态,激活会从光源横向扩散到几百微米。为了提高精度,我们探索了两种策略:优先在体细胞中表达通道视紫红质,这只对第 5 层神经元有效,以及缩小刺激光束,这可以提高两层的精度。我们的结果表明,在正确的光学设置下,可以实现单列精度的刺激,并且刺激器的光学增强可能比针对体细胞的基因改造提供更显著的精度改进。
引用:VerónicaBenavidezMagister。“”学习镜:镜像神经元如何塑造我们的学习能力”。ACTA科学神经病学7.4(2024):25-38。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年2月5日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2024.04.15.589515 doi:Biorxiv Preprint
在脑机界面(BMI)中实施操作调节,以诱导单个神经元活性的快速自愿调节,以控制外部执行器的任意映射。但是,自愿控制器的内在因素(即大脑)或输出阶段(即个体神经元)可能会阻碍BMI的性能,而数百个神经元和具有多个自由度的执行器之间的映射更为复杂。可以通过在BMI控制的背景下研究这些内在因素来提高性能。在这项研究中,我们研究了神经元亚型如何反应并适应给定的BMI任务。我们在BMI任务中调节单皮质神经元。记录的神经元根据其尖峰训练自相关分类为爆发和非爆炸亚型。两个神经元亚型的性能和平均点火率的变化都相似。然而,在爆发的神经元中,导致奖励的活性在整个条件过程中逐渐增加,而在调节过程中,非刚性神经元的反应不会改变。这些结果强调了在各种任务中都需要表征神经元特定响应的必要性,这可能最终为BMI的设计和实施提供了信息。
反复接触过敏原触发的夸大气道收缩,也称为过度反应性,是哮喘的标志。已知迷走性感觉神经元在过敏原诱导的高反应性1-3中起作用,而下游淋巴结的身份仍然鲜为人知。在这里,我们绘制了从肺部到脑干并回到肺部的完整过敏原回路。反复暴露于吸入过敏原的小鼠以肥大细胞,白介素4(IL-4)和迷走神经依赖性方式激活了单生物(NTS)神经元的核。单核RNA测序,然后在基线和过敏原挑战处进行RNASCOPE分析,表明DBH + NTS种群优先激活。DBH + NTS神经元的消融或化学发生失活降低了过度反应性,而化学遗传激活则促进了它。病毒跟踪表明DBH + NTS神经元会向歧义核(NA)发射,并且NA神经元是必需的,足以将过敏原信号传递到直接驱动气道狭窄的范围内神经元。将去甲肾上腺素拮抗剂递送到Na钝的高反应性中,表明去甲肾上腺素是DBH + NTS和Na之间的发射机。一起,这些发现提供了规范过敏原反应电路的关键节点的分子,解剖和功能定义。此知识介绍了如何使用神经调节来控制过敏原诱导的气道高反应性。
如今,实验技术使科学家可以访问大量数据。为了从生成这些数据的复杂系统中获取可靠的信息,需要适当的分析工具。卡尔曼滤波器是一种经常使用的技术,可以推断出系统的模型,即从不确定观察结果中的模型参数。最近证明,卡尔曼过滤器的无味卡尔曼过滤器(UKF)的实现,能够推断一组耦合混乱振荡器的连通性。在这项工作中,我们测试UKF是否还可以重建一小组耦合神经元的连通性,而它们的链接是电气突触或化学突触。特别是我们认为Izhikevich神经元,并旨在推断哪些神经元相互影响,将模拟的尖峰列车视为UKF使用的实验观察结果。首先,我们验证UKF是否可以恢复单个神经元的参数,即使参数随时间变化。第二,我们分析了小型神经集合,并证明UKF允许推断神经元之间的连通性,即使是为了异构,有指导性和时间发展的网络。我们的结果表明,在这个非线性耦合系统中,可以进行时间有关的参数和耦合估计。
雷特综合征 (RTT) 是一种 X 连锁神经发育障碍,由年轻女性 X 染色体上的甲基 CpG 结合蛋白 2 ( MECP2 ) 的功能丧失杂合突变引起。从失活的 X 染色体 (Xi) 重新激活沉默的野生型 MECP2 等位基因代表着对女性 RTT 患者的一个有希望的治疗机会。在这里,我们应用了一种多重表观基因组编辑方法,从 RTT 人胚胎干细胞 (hESC) 和衍生的神经元中重新激活 Xi 中的 MECP2。通过 dCas9-Tet1 和靶向单向导 RNA 对 MECP2 启动子进行去甲基化,从 RTT hESC 中的 Xi 重新激活 MECP2,而在转录水平上没有可检测到的脱靶效应。来自甲基化编辑的 RTT hESC 的神经元维持了 MECP2 的再激活,并逆转了 RTT 的两个特征:体细胞尺寸变小和电生理异常。在 RTT 神经元中,通过 dCpf1-CTCF(与 CCCTC 结合因子融合的催化死亡 Cpf1)和靶 CRISPR RNA 隔离甲基化编辑的 MECP2 基因位点可增强 MECP2 的再激活并挽救 RTT 相关的神经元缺陷,为表观基因组编辑治疗 RTT 和其他潜在的显性 X 连锁疾病提供了概念验证研究。