摘要这项工作研究了双相锂锂(LTO)/TIO 2纳米线作为锂电池阳极的稳定性。双相LTO/ TIO 2纳米线在80°C下的两个时代静脉片段成功合成了10、24和48 h。SEM图像显示,双相LTO/TIO 2的形态是直径约为100-200 nm的纳米线。XRD分析结果表明纳米线的主要成分是解剖酶(TIO 2)和尖晶石LI 4 Ti 5 O 12。LTO/TIO 2 -10,LTO/TIO 2 -24和LTO/TIO 2 -48的第一个排放特异性能力分别为181.68、175.29和154.30 mAh/g。在速率容量测试后,LTO/TIO 2 -10,LTO/TIO 2 -24和LTO/TIO 2 -48分别保持在161.25、165.25和152.53 mAh/g。每个样本的保留量为86.71%,92.86和89.79%。基于电化学性能的结果,LTO含量增加有助于提高样品循环稳定性。然而,延长的静态时间也产生了杂质,从而降低了循环稳定性。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
摘要:TIO 2用TIO 2骨料装饰的Tio 2纳米捆绑包在各种温度(170、190、210和230℃)下使用简单且可扩展的热液方法制备。揭示了合成温度是调整纳米表面骨料数量的关键参数。准备好的TIO 2聚集体和纳米束包用于设计阳极材料,其中聚集体调节了相互连接的纳米束结构的孔径和连通性。采用了一种电静态技术来用于TIO 2样品的电化学表征。由于在锂离子电池(LIBS)循环过程中使用TiO 2作为模型材料,讨论了阳极材料的形态与LIBS在循环中的容量保持能力之间的关系。清楚地发现,孔和特定表面积的大小和连通性对电池的LI插入行为,锂储存能力和循环性能产生了惊人的影响。最初的不可逆能力随着特定表面积的增加而增加。随着孔径的增加,介孔释放酶释放菌株的能力更强,从而带来更好的循环稳定性。在230℃的温度下制备的TiO 2粉末显示出最高的排放能力和电荷能力(203.3 mAh/g和140.8 mAh/g)和良好的循环稳定性。
锂离子电池(LIB)的独特特征,例如它们的长寿命和高能量密度特征,已促进了它们的全球知名度,并巩固了其作为从便携式电子设备到电动汽车的各种应用的最重要电源的地位。1 - 3液体仍然是消费电子产品和电动汽车中最广泛的电源,甚至是20 - 25年。4,5每年对LIB的需求已达到700 GWH,预计到2030年将攀升至空前的4.7 TWH。6 libs通常包含基于李的阴极(LiCoo 2,Limn 2 O 4,Lini X Mn Y Co Z O 2,Lini X Co Y Al Z O 2,LifePo 4),阳极(石墨),电解质(有机溶剂中的LIPF 6)和分离剂(聚丙烯或多乙烯)。7基于Li的阴极是Libs的关键组成部分;
TDDB仍然是超短路通道CMOS节点中的关键可靠性问题,并保证了速度性能和低消耗要求。在AC RF信号操作“外状态”过程中,从低(kHz)到非常高的频率范围(GHz)[1-2]依次以“状态”模式出现。即使“偏离状态”应力通常以比“州内”应力较小的速率降低设备,它也可能成为RF域中设备操作的限制因素,而对于逻辑应用中使用的供应电压V DD通常翻了一番。不仅设备参数漂移可能会变得很重要,而且还可以触发严重分解(BD)到Gate-Drain区域中。因此,至关重要的是要精确评估态度TDDB的可靠性,并深入了解设备级别的磨损机制,因为可以在排水管上观察到故障事件(图。1a,c)和门(图。1b,d)28nM FDSOI CMOS节点中的电流。由于影响电离的差异(ii)孔和电子的阈值能量和能屏障高度,在州或偏离状态下的热载体(HC)生成及其V GS / V DS依赖性在N通道和P通道上明显不同[3]。通过低闸门敏感性进行了的比较[4],重点是注射的载体效率,一方面,在Onders HCD下,在N-Channel侧受到较大的损害,在N-Channel侧受到了较大的损坏,并且在较大的n-channel侧受到较大的损害,并且在较大的n-channel方面受到了较大的损害,并且在较大的n-channel侧受到了较大的损害。的比较[4],重点是注射的载体效率,一方面,在Onders HCD下,在N-Channel侧受到较大的损害,在N-Channel侧受到了较大的损坏,并且在较大的n-channel侧受到较大的损害,并且在较大的n-channel方面受到了较大的损害,并且在较大的n-channel侧受到了较大的损害。这种暗示的高能量HC可能会在栅极排水区域的OFF模式下触发BD事件[5-6]与热孔效率相关[7]。
核酸疗法在沉默、表达或编辑基因方面具有巨大潜力。在这里,我们介绍了一种基于天然脂蛋白的纳米递送平台,该平台可防止小干扰 RNA (siRNA) 过早降解,确保其靶向和细胞内递送到骨髓中的造血干细胞和祖细胞 (HSPC)。在建立了一种在其核心中稳定地整合 siRNA 的载脂蛋白脂质纳米颗粒 (aNP) 原型后,我们建立了一个综合库,并彻底表征了单个 aNP 的物理化学性质。在对所有配方进行体外筛选后,我们选择了八种代表库多样性的 siRNA-aNP,并使用静脉给药方案确定了它们沉默小鼠免疫细胞亚群中溶酶体相关膜蛋白 1 (LAMP1) 的能力。我们的数据表明,使用不同的 aNP,我们可以在免疫细胞亚群及其骨髓祖细胞中实现功能性基因沉默。除了基因沉默之外,aNP 平台固有的与免疫细胞结合的能力使其具有向 HSPC 提供其他类型核酸疗法的巨大潜力。
抽象背景:旋转阳极X射线源的允许输入功率密度受到可用目标材料的性能的限制。尽管使用临床实践的变化,但使用的用于焦点表面温度的简化公式忽略了管电压。如本工作所提出的那样,改进了电子传输和靶标侵蚀的建模,可改善X射线输出降解对X射线输出降解,绝对X射线剂量输出以及诊断成像的质量和Orthovolt Cancer Cherapy的质量,用于广泛的技术因素。目的:改进电子功率吸收的建模以包括体积效应和表面侵蚀,以提高对X射线输出降低的理解,增强X射线管的可靠性并安全地扩大其使用场。方法:我们结合了蒙特卡洛电子传输模拟,耦合的热弹性有限元建模,侵蚀引起的表面粒度以及热物理和热机械目标特性的温度依赖性。提出了半经验的热机械标准来预测目标侵蚀。我们模拟了侵蚀的钨 - 侵蚀目标的吸收电子功率,并用带有球形单层的toge靶模仿,并与原始目标进行比较。Results: The absorbed electronic power and with it the conversion efficiency varies with tube voltage and the state of erosion.With reference to 80 kV (100%), the absorption of a severely eroded relative to a pristine target is 105% (30 kV), 99% (100 kV), 97% (120 kV), 96% (150 kV), 93% (200 kV), 87%(250 kV)和79%(300 kV)。我们表明,尽管表面加热的简单的müller -oosterkamp模型低估了较高的管电压相对于在80 kV下的运行的好处,但该误差限制为30 kV的误差低于-6%(建议还原),而300 kV + 13%(输入功率增加允许)。结论:纠正侵蚀目标材料的X射线转换效率,通常无法通过测量管电流来访问,这可能意味着对现有的X射线剂量计算进行校正。随着管电压增加的旋转阳极X射线试管的相对增加,其量大的电压易于预测的agnosmmüller– oosterkamp age agnosism age age agnosism age agnosism age age ageostermism age age age agnosism age age age age age agnosism agn依赖性的依赖性依赖于焦距的依赖性,这显着的量加热模型要小得多。钨孔和粒度的扩散率随着管电压增加的旋转阳极X射线试管的相对增加,其量大的电压易于预测的agnosmmüller– oosterkamp age agnosism age age agnosism age agnosism age age ageostermism age age age agnosism age age age age age agnosism agn依赖性的依赖性依赖于焦距的依赖性,这显着的量加热模型要小得多。钨孔和粒度的扩散率
大家好,欢迎参加 Addnode Group 2024 年年终报告的演讲。我是 Addnode Group 的首席执行官 Johan Andersson,今天和我一起演讲的还有我们的首席财务官 Kristina Elfström Mackintosh。我们将在演讲中介绍 Addnode Group 第四季度全年情况,讨论各部门的具体情况、我们的资产负债表以及我们的投资案例,然后我们将开始问答环节。对于那些刚接触 Addnode Group 的人,我想提醒你们,我们的报告货币是瑞典克朗。因此,Addnode Group 致力于通过数字化打造更美好的社会。通过与客户密切合作,通过创新和持续发展,我们为特定需求创建数字解决方案。我们提供的软件和数字解决方案设计建筑、基础设施和城市,以及我们每天使用的产品,如汽车,一直到我们使用的生命科学产品。对于已经设计和建造的东西,需要从生命周期的角度进行维护。公共部门也有责任制定规则和法规。Addnode Group,数字化是为了更好的社会。因此,2024 年是 Addnode Group 的转型之年。我为我们员工在过去一年的努力感到自豪,在这一年中,Addnode Group 继续投资于产品开发,推出新的数字解决方案,吸引新客户并进行收购,从而增加了收益。一年多前,我们告知了 Autodesk 业务业务模式即将发生的变化。在 2024 年,我们成功地完成了从经销商到代理模式的过渡。它澄清并展示了我们专有产品和服务对客户的价值。Kristina 稍后会描述这一点
在保证速度性能和低功耗要求的超短通道 CMOS 节点中,TDDB 仍然是一个关键的可靠性问题。在交流射频信号操作期间,“关断状态”与“导通状态”模式依次发生,从低频(kHz)到极高频范围(GHz)[1-2]。即使“关断状态”应力通常以比“导通状态”应力更小的速率降低器件性能,但它可能成为器件在射频域和毫米波应用中运行的限制因素,在毫米波应用中,电源电压 V DD 通常是逻辑应用中使用的电源电压的两倍。不仅器件参数漂移可能变得显著,而且还可能触发栅极-漏极区域的硬击穿(BD)。因此,准确评估关断状态 TDDB 的可靠性并深入了解器件级的磨损机制至关重要,因为可以在 28nm FDSOI CMOS 节点的漏极(图 1a、c)和栅极(图 1b、d)电流上观察到击穿事件。由于空穴和电子的碰撞电离 (II) 阈值能量和能垒高度不同,因此导通或关断状态下热载流子 (HC) 的产生及其 V GS / V DS 依赖性在 N 沟道和 P 沟道中明显不同[3] 。通过低栅极电压下的 HC 敏感性对 P 沟道和 N 沟道进行了比较[4],重点关注注入载流子效率,一方面主要考虑导通状态下的热载流子退化 (HCD) 下的 P 沟道侧,另一方面考虑关断状态下的 N 沟道侧,因为热空穴注入引起的损伤和 BD 敏感性更大。这意味着高能 HC 可能在关断模式下在栅极-漏极区域触发 BD 事件[5-6],与热空穴效率有关[7] 。