摘要 - 我们提供了一个以双整合器动力学建模的移动机器人团队的编队控制器,以操纵围绕轮廓的可变形物体。操纵任务定义为达到目标配置,该目标配置由2D中的形状,比例,位置和方向组成,同时保留对象的完整性。我们提供了一组旨在允许对定义任务的变量的不耦合控制的控制器。对控制器的形式分析在与平衡状态的解耦,稳定性和收敛性方面深入覆盖。此外,我们还包括控制屏障功能,以执行与任务相关的安全限制,即碰撞和过度拉伸避免。在模拟和实际实验中说明了该方法的性能。
本研究描述了现场实验,在配备无线电等离子体波接收器的空间物理卫星与其他空间物体结合时测量甚低频 (VLF) 等离子体波 (1-30 kHz),以了解次级空间物体在另一颗卫星附近的快速通过是否可以被检测到。地球电离层中的物体在其轨道运动后会形成一个离子密度稀疏区域,这可以作为物体探测的基础。2022 年,现场实验尝试在太空无线电等离子体传感器快速穿越次级空间物体尾流期间将这些离子密度稀疏检测为宽带 VLF 等离子体波噪声。这是为了回答空间物体是否可以通过其轨道运动在地球电离层中引起的等离子体离子密度扰动来探测。加拿大空间物理卫星 CASSIOPE 启动了其无线电等离子体物理包,并在 CASSIOPE 与次级物体之间预测已知的近距离接近之前、期间和之后的时间记录了电场数据。 CASSIOPE 旨在测量地球的极光、粒子和场,其偏心轨道为 330 x 1200 公里,可偶然采集地球电离层中的各种等离子体状态。此外,对于太空领域意识社区来说,该轨道定期穿过人口密集的轨道壳层,例如 Starlink、Iridium、OneWeb 和其他太空物体,从而定期提供合相机会来尝试测量等离子体振荡。在合相之前,CASSIOPE 从其交叉偶极子无线电接收仪 (RRI) 收集了电场测量值,该仪器可检测到跨度约为 1-35 kHz 的等离子体电场振荡。2022 年初,共描述了 35 次合相。当物体穿过或靠近次级物体的预测尾流时,四次合相表现出 VLF 宽带噪声能量,范围从离子回旋频率 (~36 Hz) 到下混合谐振频率 (~5-6 kHz)。然而,我们发现与次级物体最接近时间的相关性从弱到强。其他会合中,次级物体从 CASSIOPE 后面经过,而 RRI 未穿过次级物体的尾迹,其波能并未超过环境背景辐射 - 这与空间物体离子声马赫锥外的等离子体将表现出未受干扰的等离子体行为的预测一致。虽然空间物体尾迹中的密度稀疏似乎与 VLF 范围内的会合有微弱的关联,但这些发现表明,应从等离子体波的角度来检查检测到的波能与次级物体运动之间的空间和时间分离,其中波能相对于空间物体尾迹几何约束之外的地磁场线传播。
https://doi.org/10.26434/chemrxiv-2023-klv3z orcid:https://orcid.org/000000-0002-2637-9974 content contem content content content notect content contem consemrxiv note contem-chemrxiv consemrxiv note content consemrxiv note content。许可证:CC BY-NC-ND 4.0
在人造卫星存在的大部分时间里,其环境效益(特别是通过提供遥感数据)似乎大大超过了其环境成本。随着目前和预计的地球观测卫星和其他低地球轨道卫星数量的急剧增长,现在需要更仔细地考虑这种权衡。这里我们重点介绍了卫星技术对环境的一系列影响,采用生命周期方法来评估从制造、发射到脱轨期间的燃烧的影响。这些影响包括可再生和不可再生资源的使用(包括与数据传输、长期存储和分发相关的资源)、火箭发射和卫星脱轨对大气的影响,以及夜空变化对人类和其他生物的影响。对某些影响规模的初步估计足以强调需要进行更详细的调查,并确定可以减少和缓解影响的潜在方法。
本文件由秘书处根据 2023 年 1 月 30 日从欧洲航天局 (ESA) 代表机构间空间碎片协调委员会 (IADC) 收到的信息编写。信息按收到时的形式复制。
以下文章是《跨学科科学评论》的文体实验,反映了作者所从事学科的个人研究议程和轨迹。跨学科研究通常源于个人在好奇心的驱使下偶然做出的特殊经历和决定,以及影响任何人职业生涯的实际偶然性。如果从一个人的视角跨越多个学科,这种反思不可能全面,而且肯定会暴露出知识上的差距和严谨性的缺失,而这些缺陷和缺失本可以在一个学科内得到纠正。提出这种个人议程的目的不是要明确,而是通过拉开学科边缘的松散线索来展开讨论。实验的主要目标是颠覆既定的学科观点,即使同样的问题可以在另一个领域得到更权威的解决。1
摘要 感觉受体场足够大,可以容纳多个可感知的刺激。那么,大脑如何编码在特定时刻可能存在的每种刺激的信息?我们最近表明,当存在多个刺激时,单个神经元可以在某个时间段内对一个刺激和另一个刺激进行编码,这表明存在一种不同刺激的神经多路复用形式 (Caruso 等人,2018)。在这里,我们研究 (a) 这种编码波动是否发生在早期视觉皮层区域;(b) 编码波动如何在神经群体中协调;(c) 协调的编码波动如何取决于将刺激解析为独立对象还是融合对象。我们发现编码波动确实发生在猕猴 V1 中,但仅当两个刺激形成独立对象时才会发生。这种独立的物体会引起一种新的 V1 尖峰计数(“噪声”)相关性模式,涉及正值和负值的不同分布。这种双峰相关模式在表现出编码波动或多路复用最强证据的神经元对中最为明显。给定的一对神经元是否表现出正相关或负相关取决于这两个神经元是否对同一物体反应更好或具有不同的物体偏好。在 V4 中,对于单独的物体也观察到基于刺激偏好的尖峰计数相关性的不同分布,但当两个刺激融合形成一个物体时则不会出现这种情况。这些发现表明多个物体引起的反应动力学与单个刺激引起的反应动力学不同,这为多路复用假设提供了支持,并提出了一种尽管感觉编码明显粗糙但仍可以保留有关多个物体的信息的方法。
摘要 - 在自动运输可塑造对象的问题中,我们提出了一种多机器人方法,将大对象转向目标配置(对象维度,方向和位置)。首先,我们基于对象边界框的尺寸和旋转时间的演化提出了一个变形模型。我们认为该对象是由一组带有双积体动力学的移动机器人抓住的。然后,我们提出了一组名义控制器,允许达到建模可变形对象的边界框的所需配置。为了防止对象与静态或动态障碍物的碰撞,我们制定了利用我们变形模型的控制屏障函数(CBF)。最后,我们将标称控制器和CBF集成到二次编程控制器中,其中包括过度拉伸的回避和速度约束。我们报告模拟结果,以显示在不同的测试方案中这种方法的性能。
摘要 由于缺乏大气层来中和温度,没有热控制的外层空间物体会发生大的温度波动。有效的温度管理技术(TMT)对于避免极端热条件造成的不良影响至关重要。然而,现有的高性能 TMT 给航天器有限的质量和功率预算带来了额外的负担。最近,温度自适应太阳能涂层(TASC)和温度自适应辐射涂层(TARC)作为具有优异热性能的陆地物体的新型轻质、无能耗温度调节方法而出现。在这里,我们模拟并展示了 TASC 和 TARC 作为未来空间物体被动式 TMT 的巨大潜力。以一颗安装了 TARC 覆盖的机体太阳能电池板的地球同步卫星为例,即使在日食发生的情况下,其内部温度波动在一个轨道周期内也小至 20.3 C–25.6 C。这些发现深入了解了 TASC 和 TARC 在太空中的卓越性能,并将促进它们在外星任务中的应用。
