《登记公约》的目的之一是确保联合国秘书长建立并维护发射到外层空间物体的中央登记处。因此,当发射太空物体时,《登记公约》要求“发射国”通知联合国。公约将“发射国”定义为从其领土发射物体的国家或促成其发射的国家(或其国民促成其发射)。
摘要 - 人手的错综复杂的运动学能够同时抓握和操纵多个对象,这对于诸如对象传递和手持操作等任务必不可少。尽管具有重要意义,但机器人多对象抓握的领域是相对尚未探索的,并且在运动学,动力学和对象配置方面面临着显着的挑战。本文介绍了Multigrasp,这是一种新型的两阶段方法,用于在桌面上使用灵巧的多指机器人手抓住多物体。该过程包括(i)生成pre-grasp提案,以及(ii)执行掌握和提起对象。我们的实验重点主要是双对象抓地力,达到了44.13%的成功率,突出了对新对象配置的适应性和不精确的掌握能力。此外,该框架证明了以推理速度为代价的两个以上对象的潜力。
量子力学中的许多基本和关键对象是特定仿射/线性空间之间的线性映射。该结构包括基本的量子元素,例如状态,测量,通道,工具,非签名通道和带有内存的通道,以及高阶操作,例如超级信道,量子梳子,n时间过程,测试人员和过程矩阵,这些矩阵可能尚未确定可因子序。根据线性和半限制约束来推导和表征其结构属性,不仅具有基本相关性,而且在启用对量子对象集的数值优化方面起着重要作用,并允许在不同概念和对象之间进行更简单的连接。在这里,我们提供了一个通用框架,以直接且易于使用的方式推导这些属性。主要以实用的量子机械考虑为指导,但我们还将分析扩展到一般线性/仿射空间之间的映射并得出其性能,为分析集合的可能性开放,而这些集合并未被量子理论明确掩盖,但仍未得到太多探索。一起,这些结果可为所有需要线性转换特征,量子力学及其他任务的特征提供多功能且容易适用的工具。作为我们方法的应用,我们讨论了不确定因果关系的存在如何自然出现在高阶量子转换中,并为映射的特征提供了一个简单的策略,这些特征必须以“完全”的意义保存属性,即仅在不详尽的部分进行输入空间的各个部分。
在地面域中同样重要,因此从业者继续尝试延长可以将特定轨道编号保留到特定目标的时间长度。在地面域中发现有用的一种方法称为特征辅助跟踪(FAT)(有时在文献中也称为签名辅助跟踪(SAT)或分类辅助跟踪(CAT))。脂肪是一种在雷达系统中最常见的技术,尽管它也在光学跟踪系统中使用了。在脂肪中,正常的监视模式通过雷达模式大小中断,该模式仅产生仅取决于目标相对于雷达传感器的姿势和速度的测量值。模式,例如合成孔径雷达(SAR)和高范围分辨率雷达(HRR),因为一旦考虑到姿势和LOS速度,它们就会产生一些不变的签名。可以在[1]中找到有关这种方法的一种实现的详细讨论。一种简单的方法来了解问题以及如何使用脂肪来帮助解决该问题,如图1。两个目标接近交叉点,并结束一段时间。也许其中一个或多个停在十字路口,让另一个人不受阻碍。对于接地移动目标指示器(GMTI)雷达模式,这是用于接地监视雷达的典型度量观察模式,这意味着一个或两个目标在停止时消失在混乱中。即使它们足够放慢,它们也会消失在混乱中。某个时候,目标到达另一个十字路口并通过不同的路径退出。由于两个目标都可能已经停止或至少足够缓慢地移动,并且由于它们暂时靠近一段时间,并且雷达仅在定期进行定期对目标进行采样,而不是仅根据度量观测值来确定沿哪个路径沿着哪个目标撤离。如果使用脂肪,则目标离开交叉点并进行了足够分离(取决于传感器的分辨率)后,将采用HRR模式并用于与为每个目标维护的签名库匹配。假设两个目标的匹配性能足够不同,则可以解决歧义,并且如果需要,可以将适当的轨道编号重新分配到这些目标时。
本报告介绍了用于在Ladar图像中进行预处理,分割和检测车辆大小对象的不同技术。提出了五种预处理策略; 1)中值过滤,2)级联反应中的两个1-D中值过滤器,3)辐条中值过滤器,4)甜甜圈过滤器,5)离群值检测和去除。辐条中值和甜甜圈过滤器几乎毫无价值。其他过滤器的运行良好。离群值检测器在持久边缘和小结构(以及图像噪声)的同时删除了外部。关于分割算法,我们已经实施并测试了四组基于区域的算法和一组基于边缘的算法。分割的输出是对象定义算法的输入。提出了两种策略;一种常规的聚集聚类方法和一种基于图的方法。本质上,它们都给出相同的结果。在预定义间隔内具有高度,宽度和长度的簇被认为是可能的对象。所有算法在不同场景中的各种车辆的实际数据上进行了测试。很难得出任何一般结论。但是,似乎基于区域的算法的性能优于基于边缘的算法。在基于区域的策略中,基于形态或过滤操作的策略在大多数情况下表现良好。
在地质研究中,人们采用多种方法来发现自然资源。在大面积研究中,人们使用飞机、直升机和无人机 (Un nm Anned V ehicle)。重力、电磁和磁力方法都用于研究。在重力方法中,可以测量地球重力的极小变化 [1]。现代重力仪的灵敏度小于 1 mGal (1 Gal = 10 −2 m/s 2 )。重力仪可以测量接近 10 −6 g 水平的地球重力变化。 莫斯科的 Gravimetric Technologies Ltd. 公司是少数几家领先的超灵敏重力仪生产商之一 [2]。图 1 [3] 显示了安装在 Cessna 404 飞机上的 GT-1A 重力仪。应用电磁法也可以发现自然资源矿藏。第一个电磁系统出现并于 20 世纪 20 年代在斯堪的纳维亚半岛、美国和加拿大开发。电磁法用于测量土壤的电导率。电磁系统安装在飞机或直升机上。大线圈由直升机牵引或由飞机携带。线圈中的电流脉冲产生强磁场(初级场),该磁场穿透地球各层(图2)。时变场在土壤中产生涡流。线圈电流切断后,只剩下产生磁场的涡流(二次
由于业内许多人主张修订这些原始标准,2014 年 ABTEM 委托顾问 Rob Shorland-Ball 进行一项由英国艺术委员会资助的范围界定研究,以确定对任何新出版物和潜在内容的需求。在咨询了业内许多人之后,ABTEM 在英格兰艺术委员会的进一步慷慨资助下,与国际铁路遗产咨询公司 (IRHC) 合作完成了这些新指南。IRHC 团队包括 Helen Ashby、Efstathios (Stathis) Tsolis 和 Steve Davies。这项工作得到了由 Andrea Bishop、Andy King、Lis Chard-Cooper、Peter Ovenstone、Richard Sykes、Robert Excell、Ron Palmer 和 Tim Bryan 组成的指导小组的支持。Steph Gillett 是项目管理员,校对工作由 Drakon Consulting 的 Jenni Butterworth 负责。
本文件由秘书处根据 2023 年 1 月 30 日从欧洲航天局 (ESA) 代表机构间空间碎片协调委员会 (IADC) 收到的信息编写。信息按收到时的形式复制。
这项工作得到了国家科学技术重大项目(2022ZD0114900)的部分支持Horizon Europe框架通过可触及的项目(101092518)。(Zihang Zhao和Yuyang li对这项工作也同样贡献。相应的作者:Lecheng Ruan和Yixin Zhu。)Zihang Zhao和Yixin Zhu曾与中国北京大学100871北京大学的人工智能研究所一起(电子邮件:zhaozihang@stu@stu.pku.edu.edu.cn; yixin.zhu@pku.edu.edu.cn)。Yuyang Li和Zhenghao Qi曾在中国北京大学,北京大学,北京大学和北京通用人工智能研究所,中国北京100080,中国以及自动化部,北京大学,北京大学,北京大学,北京大学,北京大学,北京100084,中国(电子邮件): {liyuyang20,qi-zh21}@mails.tsinghua.edu.cn)。Wanlin Li与中国北京100080的北京通用人工智能研究所合作(电子邮件:liwanlin@bigai.ai)。Lecheng Ruan曾在中国北京100871的北京大学工程学院以及中国武汉430075的PKU-Wuhan人工智能研究所(Ruanlecheng@ucucla.edu)任职。Zihang Zhao和Lecheng Ruan在这项工作中也部分地在北京通用人工智能研究所中。数字对象标识符(DOI):请参阅此页面的顶部。Kaspar Althoefer曾在英国伦敦皇后大学伦敦皇后大学工程与材料科学学院内的高级机器人中心 @皇后玛丽(Queen Mary),伦敦E1 4NS(电子邮件:k.althoefer@qmul.ac.uk)。
本文简要介绍了一种通过现场碎片测量估算在轨卫星碎片的一些轨道参数(具体而言,特定时间的角动量方向和角动量方向的时间变化)的新方法。与以前的研究一样,这种方法采用了一个约束方程,该方程源于检测到的碎片与现场碎片测量卫星共享地心位置矢量这一事实。然而,与以前的研究不同,这种方法并不采用可以应用于破碎物体升交点赤经变化率的约束方程。相反,这种方法根据探测时的最大或最小地心赤纬来确定破碎物体的倾角。然后,这种方法通过假设一个半径为探测时地心距离的圆形轨道来找出破碎物体升交点赤经变化率的候选者。最后,利用所采用的约束方程,该方法估算了解体时上升节点的赤经,并计算了上升节点赤经变化率的修正值。本文还验证了在理想条件下,即所有探测点都假设在解体物体和现场碎片测量卫星的两个轨道平面的交线上,该新方法的有效性。