可调振荡器的闪烁噪声是一个特殊问题,而可调振荡器是捕获接收信号所必需的。直接数字合成 (DDS) 为这个问题提供了一个现成的解决方案,但可能会引入不需要的杂散信号产物。本文介绍了一种将这些产物降低到普遍令人满意的水平的新型专利方法,该方法确保了所提出的新型集成发射机合成器方法的可行性。为了在微波频率下从 DDS 提供合成的本地振荡器,必须使用一些额外的技术。本文介绍了一种使用阶跃恢复二极管 (SRD) 的方法。本文介绍了一项深入研究,表明
机械振荡器是日益多样化的精密传感应用中必不可少的组件,包括引力波探测 ( 1 )、原子力显微镜 ( 2 )、腔光力学 ( 3 ) 和弱电场测量 ( 4 )。从量子力学的角度来看,任何谐振子都可以用一对非交换可观测量来描述;对于机械振荡器,这些可观测量通常是位置和动量。这些可观测量的测量精度受到不可避免的量子涨落的限制,即使振荡器处于基态,这些涨落也会出现。使用“压缩”方法,可以操纵这些零点涨落,同时根据海森堡不确定性关系保留它们的乘积。这种压缩可以提高一个可观测量的测量精度,但代价是另一个可观测量的波动增加(5)。尽管已经在各种物理系统中创建了压缩态,包括电磁场(6)、自旋系统(7)、微机械振荡器(8-10)和单个捕获离子的运动模式(11、12),但利用压缩来增强计量一直具有挑战性。特别是,在检测过程中添加的噪声会限制计量增强,除非它小于压缩噪声。可以通过增加要测量的信号幅度来克服低噪声检测的要求。在光学干涉测量 ( 13 ) 和自旋系统 ( 14 ) 中,已经证明压缩相互作用的逆转可以放大
特殊量子态用于计量学,以实现低于经典行为状态 1,2 所确定的极限的灵敏度。在玻色子干涉仪中,压缩态 3、数态 4,5 和“薛定谔猫”态 5 已在各种平台上实现,并且与使用相干态的干涉仪相比,其测量精度更高 6,7 。另一种在计量学上有用的状态是两个具有最大能量差异的本征态的相等叠加;理想情况下,这种状态可以达到量子力学所允许的最大干涉灵敏度 8,9 。这里我们展示了在谐振子的情况下这些量子态的增强灵敏度。我们扩展了现有的实验技术 10,以创建高达 n = 100 的阶数状态,并在单个捕获离子的运动中生成谐振子基态和形式为 ∣ ⟩ ∣ ⟩ + n ( 0 ) 1 2 的数态的叠加,其中 n 高达 18。虽然实验不完善使我们无法达到理想的海森堡极限,但我们观察到对机械振荡器频率变化的灵敏度增强。这种灵敏度最初随 n 线性增加,在 n = 12 时达到最大值,与具有相同平均占据数的相干态的理想测量相比,我们观察到计量增强了 6.4(4) 分贝(不确定度是平均值的一个标准差)。这样的测量应该提供改进的特性
回顾该学科的创立历史,大约从 1900 年到 1930 年代中期,涉及数十位物理学家甚至一些数学家的工作,涉及许多实验和观察,以及许多错误的开始和停止,我们将微积分呈现为既成事实,然后回溯以填补我们的理解。不过,读者一开始就应该明白,这种微积分有大量的实验依据。在这个开场讲座中,我们通过一个例子对比了经典力学和量子力学。这个例子清楚地说明了牛顿定律所表达的经典世界观与量子力学规则所表达的现代世界观之间的差异。谐振子是典型的物理系统,因此,对它的分析,无论是经典的还是量子的,都是该学科的原型。在本讲座中,我们将回顾谐振子的经典处理,并概述量子处理。量子处理似乎是临时的、没有动机的,应该会引起一些不安,甚至困惑。读者会看到,经典处理的方法和结果的极端简单性与量子处理的复杂性形成鲜明对比。事实上,虽然经典处理的应用和含义从数学本身就很明显,但量子处理的方法和结果却需要解释和阐释。我们在这里给出了量子处理的标准解释,但读者会发现,我们的解释虽然内部连贯,但却没有动机。这种解释是在数年的时间里与量子力学机制本身的发展同时发展起来的,但读者应该知道其他解释也是可能的。在本讲座的最后,我们将深入探讨一些围绕量子力学解释的基础问题。这与我们在本书中的其余部分的做法有所不同,在其余部分中,形式主义的发展优先于哲学问题。1 尽管如此,我们希望读者从一开始就意识到,量子力学的世界观与经典的世界观截然不同,留下了许多深刻的哲学问题。欢迎来到量子世界!
高位率无线通信要求高频率[1],例如24-GHz WLAN [2],IEEE802.11AD [3]和24-29 GHz 5G手机[4]。高频无线系统中的必需电路块之一是电压控制的振荡器(VCO)。进行正交信号处理[5,6,7,8,9]的[5,6,7,8,9] [10,11,12,12,12,13,14,15,16,17],但是,高频率VCO通常需要一个非常非常高的CMOS技术和/或特殊QMOS技术和特殊的QMOS技术阶段[18] 噪音。 因此,他们的过程成本可能很高。 在这封信中,提出了使用相调整架构来抑制相位噪声的正交VCO。 可以在不增加过程成本的情况下实现此体系结构。进行正交信号处理[5,6,7,8,9]的[5,6,7,8,9] [10,11,12,12,12,13,14,15,16,17],但是,高频率VCO通常需要一个非常非常高的CMOS技术和/或特殊QMOS技术和特殊的QMOS技术阶段[18] 噪音。因此,他们的过程成本可能很高。在这封信中,提出了使用相调整架构来抑制相位噪声的正交VCO。可以在不增加过程成本的情况下实现此体系结构。