摘要:三级烧伤受伤构成了重大的健康威胁。迫切需要更安全,更易于使用,更有效的技术来治疗。我们假设脂肪酸和三肽的共价结合物可以形成与伤口兼容的水凝胶,从而加速愈合。我们首先将共轭结构设计为脂肪酸 - 氨基酸1 – amonoacid2-Apartate Am- phiphiles(CN酸– AA1 – AA2 – D),它们有可能根据每个小节的结构和特性自组装成水凝胶。然后,我们通过使用两种FMOC/TBU固相肽合成技术,基于该设计生成了14种新型结合物。我们通过串联质谱和核磁共振光谱验证了它们的结构和纯度。在低浓度(≥0.25%w / v)中形成13个结合物,但是C8酸性-ILD-NH 2显示出最佳的水凝胶化,并进一步研究了。扫描电子显微镜表明,C8酸性NH 2形成纤维网络结构和迅速形成的水凝胶,这些水凝胶在磷酸盐缓冲盐水中稳定(pH 2-8,37°C),这是一种典型的病理生理条件。注射和流变学研究表明,水凝胶表现出重要的伤口治疗特性,包括注射性,剪切稀疏,快速再凝胶和与伤口兼容的力学(例如Moduli g'''和g',g',〜0.5-15 kpa)。C8酸-ILD-NH 2(2)水凝胶显着加速了C57BL/6J小鼠上三级烧伤伤口的愈合。在一起,我们的发现证明了CN脂肪酸-AA1 – AA2-D分子模板的潜力,以形成能够促进三级燃烧的伤口愈合的水凝胶。
青霉素结合蛋白(PBPS)的D,D-转肽酶活性是β-乳用于阻断肽聚糖多物种的β-乳酰胺抗生素的众所周知的主要靶标。β -lactam诱导的细菌杀死涉及复杂的下游反应,其原因和后果很难解决。在这里,我们使用β-乳酰胺不敏感的L,D- trans-肽酶对PBP的功能替代,以鉴定在积极分裂细菌中β-l -lactams在β -lactams灭活PBP所必需的基因。通过这种方法鉴定的179个有条理的基本基因的功能远远超出了肽聚糖聚合的L,D-转肽酶伴侣,包括包括参与胁迫反应的蛋白质和外膜外聚合物的组装。β-乳转酰胺的未引起的作用包括脂蛋白介导的共价键的丧失,该键将外膜与肽聚糖连接到肽聚糖,不动deptagi-lization,尽管有效地具有有效的肽聚糖交叉链接,并增加了外膜外膜的渗透性。后一种效应表明β-乳酰胺的作用方式涉及通过外膜自促进的穿透力。
明尼苏达州罗切斯特梅奥诊所的 Juan P. Brito 医学博士及其同事估计了接受 GLP-1 RA 治疗的 2 型糖尿病成人患者与其他常见降糖药物相比,罹患甲状腺癌的风险。分析包括 41,112 名开始接受 GLP-1 RA 治疗的患者;76,093 名开始接受二肽基肽酶 4 抑制剂 (DPP4i) 治疗的患者;43,499 名开始接受钠-葡萄糖协同转运蛋白 2 抑制剂 (SGLT2i) 治疗的患者;以及 191,209 名开始接受磺酰脲类治疗的患者。
https://doi.org/10.26434/chemrxiv-2025-vcwq2 orcid:https://orcid.org/000000-0001-5564-0679 consect consect consect notect content contem许可证:CC BY-NC-ND 4.0
本研究评估了用基于抗独特型抗体(功能上模拟酵母杀伤毒素)的工程杀伤肽 (KP) 处理的猪免疫细胞的表型和细胞因子分泌的早期调节。使用猪生殖与呼吸综合征病毒 (PRRSV) 和猪圆环病毒 2 型 (PCV2) 作为体外抗原研究了 KP 对特异性免疫的影响。用 KP 和杂乱肽刺激健康猪的外周血单核细胞 (PBMC) 20 分钟、1、4 和 20 小时或保持不刺激。使用流式细胞术和 ELISA 分析细胞。使用相同的时间段进行 KP 预孵育/共孵育,以使用 ELISPOT 确定对病毒回忆干扰素-γ (IFN- γ ) 分泌细胞 (SC) 频率和单细胞 IFN- γ 生产力的影响。KP 诱导早期剂量依赖性转变至促炎性 CD172 α + CD14 +high 单核细胞和增加 CD3 + CD16 + 自然杀伤 (NK) T 细胞。KP 触发经典 CD4 − CD8 αβ + 细胞毒性 T 淋巴细胞 (CTL) 和双阳性 (DP) CD4 + CD8 α + Th 记忆细胞 (CD4 + CD8 α +low CD8 β +low) 上的 CD8 α 和 CD8 β 表达。一部分 DP 细胞也表达高水平的 CD8 α 。已鉴定的两种 DP CD4 + CD8 α +高 CD8 β +低/+高 CTL 亚群与肿瘤坏死因子 α (TNF- α ) 和 IFN- γ 分泌有关。KP 显著增强了 PRRSV 1 型和 PCV2b 特异性 IFN- γ SC 的反应性和交叉反应性。结果表明 KP 在刺激 Th1 偏向免疫调节方面有效,并支持将 KP 作为免疫调节剂或疫苗佐剂进行研究。
胃食管反流疾病(GERD)是一种常见的胃肠道疾病,对发展中国家和发达国家的种群显着影响。由于固有的病理和外在危险因素,GERD的发生率在近几十年来大幅上升。这种疾病是由于食道的防御机制与流动型的有害作用之间的不平衡。胃蛋白酶是一种仅由胃分泌的酶,由于其在酸性环境中的侵入性作用,在GERD的发病机理中起着至关重要的作用。通过彻底了解胃蛋白酶引起的GERD的发病机理,我们可以更好地解决其在临床实践中的诊断和治疗潜力。尽管当前的诊断工具被广泛使用,但它们有几个限制。结果,研究人员越来越专注于唾液胃蛋白酶测试,唾液胃蛋白酶测试是一种新型诊断方法,利用胃蛋白酶的特定病理机制。为了克服当前使用的唾液胃蛋白酶测试的缺点,荧光反应检测已与其他技术集成。超出其诊断意义,唾液中的胃蛋白酶还可以作为创新临床试验中GERD管理的目标。在这篇综述中,我们总结了GERD诊断和管理方面的最新进步,以改善患者预后。
杂膜复合物,而红线代表仅响应CXCL12的迁移。(c)在存在或不存在HBP08-2肽的情况下,单核细胞迁移,响应CXCL12的浓度增加。(A-C)在5个高功率场中计数迁移的细胞,显示为进行四个独立实验的平均值 + SEM。(d)在存在HBP08-2肽存在下用HMGB1处理的单核细胞上清液中IL-6的浓度或通过细胞因子珠阵列测量了针对TLR4(αTLR4)的中和抗体的中和抗体。数据显示为执行三个独立实验的平均值 + SEM。** p <0.01;通过未配对的t测试。
。CC-BY 4.0 国际许可,可在未经同行评审认证的情况下使用)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2021 年 7 月 23 日发布。;https://doi.org/10.1101/2021.07.23.453538 doi:bioRxiv 预印本
建立肽序列与原纤维形成之间的基本关系对于理解蛋白质错误折叠过程和指导生物材料设计至关重要。在这里,我们将全原子分子动力学(MD)模拟与人工intel-ligence(AI)相结合,以研究短肽序列排列的细微变化如何影响其形成原纤维的倾向。我们的结果表明,疏水残基的分布和电荷簇的分布很小,可以显着影响成核速率和跨β结构的稳定性。为了快速扩展此分析,我们开发了一个主动学习 - 增强的框架 - 用于分子动力学的机器学习(ML4MD),从而根据MD衍生的聚合数据迭代地完善了其预测。ML4MD有效筛选了许多肽排列,并指导发现先前未识别的原纤维式序列,从而在接收器操作特征(ROC)曲线(AUC)下达到0.939的接收器下方。总体而言,ML4MD通过将详细的原子模拟与快速和高敏锐的ML预测整合在一起,简化了淀粉样蛋白样肽的合理设计。
。cc-by-nc 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)的预印版本的版权所有者,该版本持有人于2025年2月13日发布。 https://doi.org/10.1101/2025.02.12.12.25322150 doi:medrxiv Preprint