脂肪组织曾经被称为储能的储层,但现在被认为是激素和能量通量的关键器官,对健康和疾病有重要影响。依赖性葡萄糖胰岛素多肽(GIP)是一种从小肠K细胞中分泌的泌尿素激素,负责增强胰岛素的释放,并因其独立且友善的作用而引起了与胰葡萄糖类似肽1(GLP-1)的独立和友好作用,另一种从小肠肠内分泌的细胞。在整个脂肪组织中发现GIP受体(GIPR),而GLP-1受体(GLP-1R)却没有发现,并且一些研究表明,GIPR动作降低了体重并在脂肪解析中起作用,葡萄糖/脂质/脂质的摄取/分配,脂肪组织血液流量,可能会含量为FFA(FFA),FFA(FFA)可能是FFA,FFA的氧气含量(FFA)。通过其他激素,例如胰岛素。本评论总结了使用细胞,啮齿动物和人类模型对GIP在脂肪组织(白色和棕色的不同库)中的影响的研究。这样做,我们探讨了基于GIPR的药物治疗代谢疾病的机制,例如2型糖尿病和肥胖症,以及GIPR激动剂和拮抗作用如何促进代谢健康成果的改善,并有可能通过脂肪组织中的作用来改善代谢健康。
蛋白质-蛋白质相互作用 (PPI) 在许多生物过程中发挥着重要作用,是许多人类疾病的潜在治疗靶点。钉合肽作为干扰 PPI 的最有希望的治疗候选物,具有更高的 α-螺旋度、更好的结合亲和力、更耐蛋白酶消化、更长的血清半衰期和增强的细胞通透性,与小分子药物和生物制剂相比表现出更高的药理活性。本文概述了钉合肽的持续进展,主要涉及设计原理、结构稳定性、生物活性、细胞通透性和在治疗中的潜在应用,旨在为设计和探索具有增强的生物学和药代动力学特性的钉合肽作为针对各种疾病的下一代治疗性肽药物提供广泛的参考。
总共包括11项研究,有1464名研究参与者。包括II期和III期试验。在纳入的研究中,四项研究评估了抗CD3单克隆抗体耳圆脂蛋白的干预措施。另一种抗CD3单克隆抗体Teplizumab被评估为四项研究的干预措施,而两项研究评估了抗CD20抗体利妥昔单抗,一项研究评估了Abatacept作为其介入药物。otelixizumab在较高剂量时表现出益处,但与Ebstein-Barr病毒重新激活和巨细胞病毒感染等不良反应有关,而在较低剂量下,C肽水平或糖基化血红蛋白(HBA1C)未能显示出显着差异。teplizumab在减少C肽丧失和外源胰岛素需求方面表现出了希望,并且与不良事件有关,例如皮疹,淋巴细胞减少症,尿路感染和细胞因子释放综合征。但是,这些反应仅与治疗起源有关,它们自行消退。利妥昔单抗改善了C肽反应,而Abatacept疗法表现出降低C-肽的损失,改善了C肽水平并降低了HBA1C。
肽是化学和生物学中相关的分子实体,其应用从药物发现[1,2]到食品技术[3,4]。机器学习已加速了肽发现,例如,用于从头设计,序列优化和证明/生物活性预测[5-8]。机器学习的关键步骤是肽的反应[9,10],从而将相关的结构插入转换为用于模型训练的数值格式。可以采用几种策略来编码肽信息,例如,通过描述物理化学特征[10],单速编码[11]和/或进化信息[12]。这些方法中的每一种都捕获了不同的结构信息,可能适合不同的机器学习方法[13],并且可能对模型性能有唯一的贡献[11,14]。虽然公共批准可用于特定编码meth-
神经退行性疾病是全球残疾的主要原因,帕金森氏病(PD)是增长最快的神经系统疾病。在2019年,全球估计表明,有超过850万人患有PD的人。与衰老紧密相连,预计到2040年将翻一番,对整个公共卫生系统和社会造成了很大的压力(https://www.who.int/news-news-roos-rooo m/fact-seets/fact-sheets/fact-sheets/delets/parkinson-disease)。迄今为止,没有血液检查,脑扫描或其他测定方法可以用作PD的确定诊断测试,目前的诊断方法主要依赖于运动症状和神经影像学的专家临床评估[1]。不幸的是,到诊断时,该疾病已经发展到一个相对先进的阶段,在本质中,大约60%的多巴胺能神经元在不可逆地丢失。在此阶段,延迟疾病进展可能为时已晚。因此,迫切需要在早期阶段检测PD的正交分子诊断方法。pd在病理上以蛋白质聚集体在受影响的神经元中的积累,主要由α-突触核蛋白(αS)组成[2,3]。αS的低聚物,而不是神经淀粉样蛋白包含物,被认为是毒性获得的实际致病罪魁祸首,改变了细胞骨架结构,膜通透性,膜流入,钙涌入,活性氧,活性氧,突触触发和神经元兴奋性[4,5]。这导致了与可溶性单体αs不良的交叉反应,这在CSF中的确更为丰富[4,14,15]。有证据表明,与非PD对照相比,PD患者的脑脊液(CSF)中αS低聚物的升高升高,表明它们在该生物FLUID中的水平可以用作PD的生物标志物,为诊断提供了机会[6-8]。然而,我们缺乏对αs低聚物结构的知识,以及它们的短暂性,异位和动态性质,使他们的跟踪和定量成为一项具有挑战性的任务。αs的抗体的产生和使用已成为首选选项,作为诊断和治疗目的的特定元素,例如抑制蛋白质聚集[9]。因此,在早期研究中,CSF中的αS聚集体和其他生物学流体(如血浆或血清)的检测依赖于诸如ELISA [10-12]或CLIA [13]等免疫测定的检测,其抗体通常针对αs s s s s s s s s s s s s s s s s s s s s。因此,这种方法显示出很大的可变性和有限的可靠性[16]。还采用了一些其他已建立的技术来检测有毒的低聚物,例如免疫组织化学,接近连接测定,基于Luminex的测定法,这也需要抗体[17,18]。同样,最近的策略同样依赖于将可用的抗体纳入具有不同感应构型(光学,电化学等)的不同生物传感器原型中。所有这些最终都可能遭受与使用这些受体相同的缺点。基于DNA的适体[19]最近为αs的低聚形式产生了另一种生物受体[20],尽管它们也显示出对Aβ1-40低聚物的识别。超敏感蛋白扩增测定法的最新进展,例如蛋白质不满意的环状扩增(PMCA)和实时Qua King诱导的转化率(RT-QUIC),该转化率(RT-QUIC)最初是针对人类疾病疾病的诊断,已显示出可吸引蛋白质聚集的有希望的结果,该蛋白质与患者的识别和分流相关[7] [7] [7] [7] [7]。但是,它们在常规DI不可知论中的临床实施中也表现出重大局限性。首先,不可能知道哪种是在反应中放大的特定αS物种,因此,分子生物标志物在
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecom-mons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
抗菌肽(AMP)是具有抗菌特性的宿主防御肽,这些肽已被用作各种哺乳动物物种的精液中的添加剂,以提高精液质量和预防细菌载荷。连续使用抗生素可降低检查细菌生长以及精液质量的功效。本评论旨在概述不同哺乳动物物种中用作精液添加剂的AMP,以替代抗生素。我们已经讨论了有关放大器的系统发展研究,其结构,分类,行动机理,应用,未来的前瞻性和挑战。我们还回顾了有关使用不同放大器作为增强山羊精液产后生育能力的添加剂的研究。特别关注放大器,作为处理抗抗生素具有抗性细菌菌株的潜在替代策略。合成放大器的设计旨在增加针对微生物的抗菌活性,尤其是那些对抗生素的抗生素。放大器还通过修饰宿主细胞免疫并改善截闻后的精子生育能力来帮助保护宿主。由于抗生素耐药性的日益增长的问题,AMP的发展引发了人们的关注,成为一种面向未来的抗感染和抗微生物剂,以提高冷冻可吸收性和精子生育能力。
神经肽 Y (NPY) 是一种由 36 个氨基酸组成的肽,由中枢和周围神经系统在长时间交感神经激活后释放,在许多生理功能中发挥着重要作用。它是心脏中最丰富的神经肽,7 存在于供应血管、心肌细胞和心内膜的神经元中。8 NPY 与去甲肾上腺素一起由心脏交感神经末梢释放,并作为辅助递质和心脏功能的局部调节剂,充当强效血管收缩剂,同时还降低副交感神经驱动 9 并增加肌细胞钙负荷,1 0 因此它可能在 HF 的病理生理学中很重要。神经肽 Y 的半衰期比去甲肾上腺素长,并增强其血管收缩作用。功能性 NPY 是在前体 NPY 裂解后产生的,而前体 NPY 又被酶二肽基肽酶-4 进一步截断。它的作用是通过 G 蛋白受体 Y 1 R-Y6R 介导的。它被认为与动脉粥样硬化的发病机制有关,11 维持
肽天然产品具有多种有用的应用,例如农药,兽医,药物和生物产品。要发现新的天然产物,将它们操纵以产生模拟生成,并利用这些生物活性化合物用于合成生物学的潜力,有必要开发出强大的方法来表达生物合成基因的表达。无细胞的合成生物学正在作为一种重要的互补方法出现,因为它非常需要在更快的时间范围内表达蛋白质,并且不依赖菌株的遗传障碍性,从而改善了设计构建测试的元素循环的吞吐量。此外,在细胞外产生代谢产物可以克服诸如细胞毒性等问题,这些毒性可能会阻碍抗生素发育等应用。在这篇综述中,我们着重于非核糖体肽合成酶产生的肽天然产物的无细胞产生。非ribsomal肽是由非核糖体肽合酶生物合成的,这些肽是大型“巨型”酶,为异源表达提供了特定的挑战。首先,我们总结了在无细胞系统中表达的NRPS及其相应的肽代谢产物。与此相关,我们讨论了在无细胞蛋白质合成中表达如此大蛋白的需求和挑战,以及为无细胞蛋白质合成而开发的宿主机制,这些蛋白质与未来的非核糖体肽代谢物可能特别相关。然后,可以将无细胞系统的开发用于原型制作,以加快这些复杂途径的工程生物合成的努力。
神经退行性疾病技术描述神经退行性疾病的标志之一是,突触与神经元之间的信息传播有关,在疾病进展过程中恶化。塔拉·特雷西(Tara Tracy)博士在巴克研究所(Buck Institute)的实验室确定了位于大脑突触的蛋白质,该蛋白质在此过程中发生了变化。该蛋白质称为kibra,称其为肾脏和大脑。证明了在阿尔茨海默氏病小鼠模型中恢复kibra的功能,恢复了老年小鼠的记忆,但雄鹿研究人员创建了合成的kibra肽,可以用作治疗记忆和认知能力下降的治疗方法。这些新型肽已经在小鼠陶氏病模型(发生在阿尔茨海默氏病以及其他神经退行性疾病)中进行了测试。我们的kibra肽能够恢复该小鼠模型中的记忆和可塑性,表明尽管存在有毒的tau蛋白,但突触恢复还是可能的。应用新型肽治疗剂用于治疗