我们通过层纳米颗粒(LBL NP)报告了与阳离子肿瘤 - 渗透肽(TPP)的表面功能化,同时保持颗粒稳定性和电荷特性。这种策略消除了对肽的结构修饰的需求,并使表面化学物质难以修改或通过共价共轭策略无法访问。我们表明,羧化和硫化的LBL NP都能够容纳线性和环状TPP,并使用基于荧光的检测测定法,以量化每NP的肽载荷。我们还证明了在吸附后保持TPP活性,这表明足够数量的肽具有适当的表面取向,从而有效地在体外摄入了功能化的NP,这是通过流式细胞仪和
本预印本的版权所有者(此版本于 2020 年 5 月 23 日发布。;https://doi.org/10.1101/2020.04.23.055467 doi: bioRxiv preprint
Axon 利用其成熟的肽基疫苗平台生产了一种新型预防性 COVID-19 疫苗,旨在治疗受感染患者并保护健康个体免受感染。Axon 的疫苗仅含有能够诱导所需 T 细胞和 B 细胞介导的免疫反应的选定表位,以防止病毒刺突 (S) 糖蛋白与其目标人体细胞相互作用,从而阻止病毒进入细胞并扩散。这种方法旨在防止在先前针对 SARS-CoV 的传统疫苗研究中观察到的不良严重副作用。
g蛋白偶联受体(GPCR)在各种生理过程中起关键作用,并成为7个关键靶标的药物发现靶标。肽是针对8种GPCR的特别引人注目的治疗剂,因为它们经常表现出优异的亲和力,选择性和效力。然而,GPCR的动态构象状态深刻影响其与配体的相互作用10,强调了对肽设计中特定国家特定策略的需求。为了解决这个问题,11我们开发了针对GPCR的有效状态特异性肽设计框架。此方法12包括对GPCR状态转变机制的分析和特殊优化的肽结构13 GPCR,Helixfold-Multistate的预测模型,从而使我们能够评估14个设计肽的状态特异性分数。在最近的GPCR肽PDB上,HelixFold-Multistate不仅保持GPCR 15活性状态,类似于Alphafold-Multistate,而且还表现出高相互作用预测能力16与Alphafold-Multimer在Dockq和IRMS方面相当。对CXCR4肽亲和力的实验17数据表明,其置信度得分比Alphafold-Multistate的18个具有更高的相关性和筛选能力。通过采用这种设计方法,我们成功地鉴定了生长激素促促促素受体(GHSR)和Apelin受体20(APJ)的激动剂19和拮抗剂肽,分别表现出低于100 nm和10 nm的EC50值。尽管拮抗剂21肽面临挑战,但我们的方法还鉴定了GHSR和APJ的抑制剂,其IC50值分别为3.3 µm和22 20.3 µm。23 div>
肽天然产品具有多种有用的应用,例如农药,兽医,药物和生物产品。要发现新的天然产物,将它们操纵以产生模拟生成,并利用这些生物活性化合物用于合成生物学的潜力,有必要开发出强大的方法来表达生物合成基因的表达。无细胞的合成生物学正在作为一种重要的互补方法出现,因为它非常需要在更快的时间范围内表达蛋白质,并且不依赖菌株的遗传障碍性,从而改善了设计构建测试的元素循环的吞吐量。此外,在细胞外产生代谢产物可以克服诸如细胞毒性等问题,这些毒性可能会阻碍抗生素发育等应用。在这篇综述中,我们着重于非核糖体肽合成酶产生的肽天然产物的无细胞产生。非ribsomal肽是由非核糖体肽合酶生物合成的,这些肽是大型“巨型”酶,为异源表达提供了特定的挑战。首先,我们总结了在无细胞系统中表达的NRPS及其相应的肽代谢产物。与此相关,我们讨论了在无细胞蛋白质合成中表达如此大蛋白的需求和挑战,以及为无细胞蛋白质合成而开发的宿主机制,这些蛋白质与未来的非核糖体肽代谢物可能特别相关。然后,可以将无细胞系统的开发用于原型制作,以加快这些复杂途径的工程生物合成的努力。
结果:我们可以获得一个新的序列,其中第一个N末端氨基酸和最后一个结合到BACE-1的催化位点,并显示出较高的稳定性和疏水性。合成肽显示出对BACE-1和Ki = 94 nm的竞争抑制作用,当注射分化神经元时,它可以减少β42O的产生。在等离子体中,其半衰期为〜1 h,间隙为0.0015μg/l/h,VSS为0.0015μg/l/h。在注射后30分钟发现肽在脾脏和肝脏中发现,并在此之后降低其水平,当它在肾脏中进行量化时,表明其快速分布和尿液排泄。有趣的是,肽是在其施用后2小时在大脑中发现的。组织学分析表明,任何器官均未发生形态学改变,以及缺乏炎症细胞,表明缺乏毒性。
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]
摘要:新的蛋白质-蛋白质相互作用(PPI)正在不断被发现,但PPI 与传统靶标相比具有不同的物理化学性质,这使得使用小分子变得困难。肽为靶向 PPI 提供了一种新的方式,但通过计算设计合适的肽序列具有挑战性。最近,AlphaFold 和 RosettaFold 使得从氨基酸序列预测蛋白质结构成为可能,并且精度极高,从而实现了从头蛋白质设计。我们使用 AfDesign 的“结合剂幻觉”协议(一种使用 AlphaFold 的从头蛋白质设计方法)设计了可能以 PPI 为靶蛋白的肽。然而,这些肽的溶解度往往较低。因此,我们使用氨基酸的溶解度指数设计了溶解度损失函数,并开发了可感知溶解度的 AfDesign 结合剂幻觉协议。使用新协议设计的序列中肽的溶解度随着溶解度损失函数的权重的增加而增加;此外,它们还捕捉到了溶解度指数的特征。此外,通过对接结合亲和力评估,新协议序列往往比随机或单残基替换序列具有更高的亲和力。我们的方法表明,可以设计出能够结合PPI界面同时控制溶解度的肽序列。
摘要在被子植物中,女配子植物分泌了一系列吸引剂,以吸引花粉管进行施肥。在双子蛋白酶中,所有确定的吸引剂都是防御素样半胱氨酸的肽(CRPS)家族成员,而Gramineae中的Zea Mays(如Gramineae中的Zea Mays)使用非CRP型鸡蛋膜1类样肽作为花粉管吸引者。但是,dicots是否具有非Crp吸引剂尚不清楚。在这里,我们表征了拟南芥中非防御素肽诱人的非防御素肽1(NPA1)。NPA1在协同中受MyB98的转录调节。除了特定的花粉管外,NPA1还能够吸引姊妹物种的花粉管A. Lyrata和C. Rubella,但不能吸引E. salsugineum。此外,当引入NPA1以补充MYB98时,它会将花粉管的吸引力和生育能力恢复到与诱饵互补相媲美的水平。一起,这项研究确定了在dicot中的一种新型的肽吸引剂,并突出了吸引提示和信号通路的多样性。
1。引言大麻二酚(CBD)是大麻的主要植物大麻素组成部分。近年来,CBD因其潜在的治疗作用而引起了人们的关注,并已作为各种疾病的药物进行了研究[1]。CBD最著名的用途之一是治疗某些类型的癫痫病,尤其是在儿童中。实际上,2018年美国食品药品监督管理局(FDA)批准了一种基于CBD的药物,用于治疗两种罕见形式的儿童癫痫,Lennox-Gastaut综合征和Dravet综合征。cbd还在其他疾病中的潜在益处(例如焦虑,睡眠障碍,疼痛和炎症)中进行了研究[2-4]。已经进行了许多临床和临床前研究,以确定CBD的有效性和安全性。尽管增加了对使用大麻二酚进行疾病和症状管理的临床和公众兴趣,但其高亲脂性和低水溶性限制了其作为治疗性的有效性[5]。因此,探索提高CBD在许多领域开发和应用的水溶性的有效策略至关重要。
