摘要 20 世纪 80 年代初,萨根和蒂普勒就费米悖论的解释展开了激烈的争论,但并未分出胜负。萨根根据哥白尼原理主张外星智能的存在,而蒂普勒则根据奥卡姆剃刀原理主张外星智能的不存在。蒂普勒的立场是对类似但更早的哈特宣言的扩展。然而,自我复制星际机器人探测器在蒂普勒论证中发挥的作用至关重要。任何具备技术能力的物种都会发展自我复制技术,作为以最少的投资探索太空和整个银河系的最经济手段。没有证据表明我们的太阳系包括小行星带内存在此类探测器,因此外星智能不存在。这是一个强有力且令人信服的论点。反驳的论据都很薄弱,包括萨根的社会学解释。我们提出一个哥白尼论点,即外星智能并不存在——人类如今正在开发自我复制技术。作为通用原位资源利用 (ISRU) 能力的一部分,我们正在开发利用外星资源(包括电动机和电子设备)3D 打印整个机器人机器的能力。我们拥有 3D 打印电动机,可以利用每个恒星系统中都应有的外星材料。从类似的材料中,我们找到了一种 3D 打印神经网络电路的方法。从我们的工业生态中,自我复制的机器和通用构造器都是可行的。我们详细描述了如何利用小行星资源制造出自我复制的星际飞船。我们描述了小行星材料处理的技术特征(预计在大多数恒星系统中都很常见),以及某些类型的粘土和其他碎屑材料的过量生产。自我复制技术正在开发中,而且即将问世——如果人类正在追求自我复制技术,那么根据哥白尼原理,其他任何精通技术的物种也会这样做。没有证据表明他们已经这样做了。
摘要 — 原子探针断层扫描是唯一能够以亚纳米分辨率测量所有化学元素的三维空间分布而不受质量或原子序数限制的技术。该技术在各种半导体器件的开发中发挥着重要作用。然而,在世界最发达地区之外,它仍然鲜为人知。考虑到这一点,本文旨在向巴西微电子学会介绍和讨论原子探针断层扫描技术,更重要的是,讨论它对纳米级器件开发的影响。首先,我们介绍原子探针断层扫描的工作原理和实验程序。接下来,我们介绍一些该技术在设备开发中应用的真实例子。最后,我们简要讨论了一个尚未实现的应用的可能性,即亚单层量子点的原子探针断层扫描。
动作电位是神经计算的基本单位。尽管在动物模型中记录大量单个神经元方面已经取得了重大进展,但由于临床限制和电极可靠性,这些方法在人类身上的转化受到限制。在这里,我们介绍了一种可靠的方法,使用 Neuropixels 探针在人类术中记录数十个神经元,可同时记录多达 100 个单个单元。大多数单个单元在到达目标深度后 1 分钟内处于活动状态。电极阵列的运动与产量呈很强的负相关性,这表明进一步提高探针效用面临着重大挑战和机遇。在大多数记录中,时间上活动相近的细胞对在空间上也更接近,展示了解决复杂皮质动态的能力。总之,这种方法可以访问人类新皮质深度上的群体单个单元活动,而这种规模以前只能在动物模型中访问。
高能电子和 X 射线光子与诸如卤化物钙钛矿之类的光束敏感半导体的相互作用对于表征和理解这些光电材料至关重要。使用可以在纳米尺度上研究物理特性的纳米探针衍射技术,研究了电子和 X 射线辐射与最先进的 (FA 0.79 MA 0.16 Cs 0.05 )Pb(I 0.83 Br 0.17 ) 3 混合卤化物钙钛矿薄膜 (FA,甲脒;MA,甲铵) 的相互作用,使用扫描电子衍射和同步加速器纳米 X 射线衍射技术跟踪局部晶体结构随通量的变化。从中识别出钙钛矿晶粒,在 200 e − Å − 2 的通量后,与 PbBr 2 相对应的额外反射作为晶体降解相出现。这些变化伴随着相邻大角度晶粒边界上小 PbI 2 晶体的形成、针孔的形成以及从四方到立方的相变。纳米 X 射线衍射中的光子辐照也会引起类似的降解途径,表明存在共同的潜在机制。这种方法探索了这些材料的辐射极限,并提供了纳米级降解途径的描述。解决大角度晶粒边界问题对于进一步提高卤化物多晶薄膜的稳定性至关重要,尤其是对于易受高能辐射影响的应用,例如空间光伏。
关于盎鲁效应的一个长期争论是关于其模糊的热性质。在本文中,我们使用量子Fisher信息(QFI)作为一个有效的探针,从局域和全局两个角度探索盎鲁效应的热性质。通过解析UDW探测器的全动态,我们发现QFI是探测器能隙、盎鲁温度TU和背景场特性(如质量和时空维数)的时间演化函数。我们证明探测器达到平衡的渐近QFI仅由TU决定,证明了KMS条件暗示的盎鲁热性的全局方面。我们还证明盎鲁效应的局部方面,即探测器接近同一热平衡的不同方式,被编码在相应的QFI时间演化中。具体来说,我们发现在无质量标量背景下,QFI 在 n = 3 维时空中具有独特的单调性,而对于 n ̸= 3 模型(其中在早期存在局部峰值)和有限加速度,QFI 变为非单调性,这表明在相对较低的加速度下可以实现对 Unruh 温度的更高估计精度。一旦场获得质量,相关的 QFI 就会对 Unruh 退相干具有显著的稳健性,即其局部峰值可以维持很长时间。当与更大质量的背景耦合时,持久性甚至可以增强,并且 QFI 具有更大的最大值。QFI 的这种稳健性肯定可以促进任何实际的量子估计任务。
抗生素耐药性是公共卫生面临的一大挑战,过去的一年里这一问题愈演愈烈 [1, 2]。对于由细菌病原体金黄色葡萄球菌引起的感染尤其如此,这种感染是导致死亡的主要原因,通常与社区获得性耐药菌株 (MRSA) 有关 [3]。这就迫切需要找到新的解决方案,以便有效地诊断和治疗,克服耐药性,避免抗生素库的耗尽。需要金黄色葡萄球菌内的新蛋白质靶点来开发有效的诊断探针,既可用于成像应用,也可用于治疗策略,以阻断细菌的生产性感染,而不会迫使生物体选择耐药突变体。基于氟膦酸酯的活性探针在促进生物膜生长的条件下,鉴定出金黄色葡萄球菌中十种以前未鉴定的活性丝氨酸水解酶,这可以满足这一需求。这些酶被命名为氟膦酸酯结合水解酶 (Fphs),每个酶的字母顺序取决于其预测大小 (52 kD FphA – 22 kD FphJ) [4]。它们都是 α/β 水解酶超家族的成员,其特点是核心由八个 β 链组成,这些 β 链由几个 α 螺旋连接,活性位点为丝氨酸-组氨酸-天冬氨酸或谷氨酸三联体。亲核丝氨酸用于水解底物,小分子可以轻松且特异性地靶向 [5, 6]。一般来说,这些蛋白质在代谢物、肽和脂质的加工中起着重要作用,是控制细胞信号传导和代谢的一种手段;然而,到目前为止,所有 Fphs 的生物学功能仍然未知,只有 FphF 的结构被确定 [6, 7]。它们在生物膜形成条件下的活性状态使它们易于通过化学抑制剂进行修饰,从而开发成探针和药物。这种新化合物
我们构思并构建一个位点原位高压时间分辨的超快光谱仪器,可在高压条件下促进超快泵 - 探针动力学测量。我们将超快泵 - 探针光谱系统与钻石砧室(DAC)系统集成在一起。显着,DAC和样品均固定在光路中,没有运动和在整个超快光谱实验中旋转,包括调整和校准压力。该仪器因此避免了由于样品运动或旋转而引起的插入伪像,从而实现了精确的高压超快泵 - 探针动力学研究。作为一个例子,我们比较了现场条件与现场条件对SR 2 IRO 4在0–44.5 GPA高压下的SR 2 IRO 4的超快动力学的影响。我们的数据和分析表明,使用现场原位布局可大大降低常规可能的伪像。我们的工作有助于高压超快科学调查发展为有希望的新领域,该领域可以探索高压制度中非平衡激发量子状态。
。CC-BY-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 9 月 16 日发布。;https://doi.org/10.1101/2021.06.20.449152 doi:bioRxiv 预印本
在本文中,我们使用两种模式挤压状态的形式主义在最近研究的黑洞气体框架中调查了量子电路的复杂性和纠缠熵,以任意空间上固定的宇宙学平坦的宇宙学Friedmann-Lema- Robertson-Robertson-Walkson-Walks-Walker-Walker背景时间为背景时间。我们通过遵循两种不同的处方,即协变矩阵方法和尼尔森的方法来计算各种复杂性度量,并研究这些复杂性的演变。独立地,使用两种模式挤压状态形式主义,我们还计算了r'enyi和von-neumann纠缠熵,这显示了纠缠熵和量子电路复杂性之间的固有连接。我们分别研究了三个不同的空间维度的复杂度度量和纠缠熵的行为,并在三个空间维度中观察到有关规模因子的这些数量演变的各种显着不同特征。此外,我们还研究了平衡温度的潜在行为,其中两个最重要的量,即,复杂性的变化速率与尺度因子和纠缠熵。我们观察到,无论空间尺寸如何,平衡温度在纠缠熵上都取决于。
目前,维护正在向数字化转型,其中也正在开展检查领域的研究。目前的文献表明,人们正努力以各种方式跟踪超声波检测探头的路径,以便将记录的超声波数据与位置信息(即坐标)联系起来。在大多数情况下,数据与独立于零件的参考系统相关联。然而,这样一来,就没有建立对零件坐标系的直接引用,这意味着未来的利用潜力(例如在数字孪生中)没有得到充分利用。为了使用零件本身作为参考,本文开发了一种混合跟踪系统,其中零件无需标记即可跟踪,而超声波检测探头则配备有被动反射标记。这使得可以将超声波检查的传感器数据直接分配给原点位置,而无需为零件配备光学标记。正在对系统的设置和软件开发进行初步工作。实验评估显示了普遍适用性。此外,还介绍了一种使用增强现实技术可视化记录的超声波数据的方法。
