铁凋亡被认为是脊髓损伤(SCI)激活的细胞死亡途径之一。然而,管理此过程的确切调节机制仍然鲜为人知。在这里,这项研究确定了TRIM32,一种E3泛素连接酶,是神经元铁毒性神经元的关键增强子。trim32通过加速GPX4的降解来促进神经元萎缩,这是甲状腺毒性的必不可少的抑制剂。神经元中TRIM32的条件缺失显着抑制神经元的铁肿瘤并促进神经元存活,最终改善了SCI后小鼠运动功能恢复。然而,TRIM32的过表达表现出严重的神经元丧失和行为功能差,可能会因抑制剂liproxstatin-1而减弱。从机械上讲,TRIM32与GPX4相互作用,在K107处促进了GPX4的K63连接的泛素化修饰,从而增强了GPX4的p62依赖性自噬降解。此外,ROS-ATM-CHK2信号通路在S55处磷酸化的TRIM32,进一步导致SCI后GPX4泛素化和降解以及随后的神经元肥胖病,表明ROS和TRIM32之间的阳性反馈回路循环循环。在临床上,SCI患者可显着促进脂质过氧化。这些发现表明,TRIM32是一种神经元螺氏凋亡增强剂,在SCI后通过促进K63连接的泛素化和随后的p62依赖性自载体脱离GPX4的GPX4,对小鼠的神经元存活和运动型恢复有害。
参与国家之间,包括对教育的文化态度(例如,詹森,亨特,索尼曼和伯恩斯,2012年;皮尔森,2012年)。数十年来在美国辩论的一个问题是孩子是否在学校里花费足够的时间(Barrett,1990)。尽管与许多其他国家相比,美国儿童每年的上学天数相对较低,在从中等中等教育到下级教育的总教学时间方面,美国却是最高的(经济合作与发展组织,2014年)。然而,在各个国家(以及美国境内的各州),算作官方指导时间的变化。此外,是否按预期使用时间(教学,而不是执行行政或室内管理任务),以及在学校外(例如,家庭作业,毕业后的辅导)上花费了多少额外时间,这也显然也很重要。独立于是否有足够的时间专门用于学院(无论是在学校内外),也许是另一个更可行的问题(以及本文的重点)是如何
1 简介 经济自由与许多积极成果呈正相关,包括更快的经济增长(Hall 和 Lawson,2014 年)、环境进步(Barbier,2019 年)以及面对经济危机时更强的复原力(Geloso 和 Bologna Pavlik,2020 年;Candela 和 Geloso,2021 年)。最近,人们更加关注经济自由和收入不平等之间的联系,研究结果有些混乱,一些研究表明经济自由与更高水平的不平等有关,而另一些研究则发现相反的情况(Berggren,1999;Carter,2007;Ashby 和 Sobel,2008;Bennett 和 Vedder,2013;Apergis、Dincer 和 Payne,2014;Strum 和 De Haan,2015;Holcombe 和 Boudreaux,2016;Bennett 和 Nikolaev,2016、2017;Apergis 和 Cooray,2017;Bjørnskov,2017)。这些混乱的结果并不令人意外,原因有两个。首先,收入不平等的研究是出于对收入流动性的关注。毕竟,说经济自由与经济增长呈正相关并不能告诉我们最贫穷的人是否从这种增长中受益。其次,收入不平等数字是收入流动性的非常成问题的指标。如果使用一个收入不平等数据集而不是另一个数据集,类似的实证策略(相同的时间框架、方法、设计)会产生截然不同的结果(Holcombe 和 Boudreaux,2016 年)。因此,每个数据集的有效性都成为争论的对象(Piketty 和 Saez,2003 年;Mechling、Miller 和 Konecny,2015 年;Auten 和 Splinter,2019 年、2021 年;Larrimore 等人,2017 年、2021 年;Geloso 和 Magness,2020 年;Geloso、Magness、Moore 和 Schlosser,2018 年)。更重要的是,收入不平等的统计数据经常受到构成偏差的影响,这使其无法反映收入流动性。当新人加入现有人口但这些新人的收入分配与本地人口不同时,就会出现构成偏差。例如
欧盟委员会 (EC) 正在制定可持续产品倡议 (SPI),该倡议涉及将生态设计指令的范围扩大到尽可能广泛的产品,并开发欧洲数字产品护照 (DPP)。DPP 是 i) 唯一产品标识符和 ii) 与该唯一标识符相关的不同价值链参与者收集的数据的组合。这些数据可能包括产品的特性以及有关其价值链和寿命的信息(动态数据)。CE 中的材料、组件、产品和资产的智能管理需要大量信息。目前,这些信息对于需要它们的人来说并不容易获得,这不仅导致消费者、生产者和整个经济的巨大价值损失,而且还会造成污染和浪费。
E3 Sumo蛋白连接酶CBX4(CBX4)是PolyComb-抑制复合物1(PRC1)的关键组成部分,据报道调节与肿瘤生长,转移和血管生成有关的多种基因。然而,其在T细胞介导的抗肿瘤免疫中的作用仍然难以捉摸。为了阐明这个问题,我们生成了用CBX4的T细胞特异性缺失的小鼠。敲除小鼠的肿瘤生长增加。此外,它们的肿瘤锻炼淋巴细胞表现出受损的肿瘤坏死因子-Alpha(TNF-A)和干扰素 - 伽马(IFN-C)的产生,其程序性细胞死亡蛋白1(PD-1)水平升高。实际上,在基因敲除小鼠的所有主要的外围T细胞的主要子集中观察到了失调的PDCD1表达,响应于T细胞受体(TCR)刺激,敲除小鼠的所有主要子集都伴有功能缺陷。在支持CBX4和PD-1之间的直接联系时,CBX4过表达导致PDCD1表达的下调。表观遗传分析表明,CBX4的缺乏会导致PDCD1启动子的抑制性组蛋白修饰的积累减少(H3K27me3)。此外,抑制多孔抑制复合物1(PRC1)的E3连接酶活性或多孔反向反应复合物2(PRC2)的甲基转移酶活性恢复了CBX4转染的细胞中的PDCD1表达。累积地,这项研究揭示了CBX4在调节T细胞功能中的新功能,并扩展了我们对PDCD1表达的表观遗传控制的理解。
BE,Pengpenng等。 天然医学(2014年)江,Chunhui等。 frontis in Endocrynology(2015)Jiang,Chunhui等。 分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)天然医学(2014年)江,Chunhui等。 frontis in Endocrynology(2015)Jiang,Chunhui等。 分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)frontis in Endocrynology(2015)Jiang,Chunhui等。 分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)肥胖30(2022)
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
在修复链间交联 (ICL) 期间,会产生 DNA 双链断裂 (DSB)。范康尼贫血症 (FA) 核心复合物被募集到 ICL,通过同源重组 (HR) 促进该 DSB 的高精度修复。然而,FA 核心复合物是否也促进 ICL 独立 DSB(例如由电离辐射或核酸酶诱导的 DSB)的 HR 仍存在争议。在这里,我们在基于 CRISPR/Cas9 的筛选中将 FA 核心复合物成员 FANCL 和 Ube2T 鉴定为 HR 促进因子。使用同源细胞系模型,我们进一步证明了 FANCL 和 Ube2T 及其泛素化底物 FANCD2 的 HR 促进功能。我们表明 FANCL 和 Ube2T 以 FANCM 依赖的方式定位在 DSB 上,并且是 FANCD2 在 DSB 上积累所必需的。从机制上讲,我们证明 FANCL 泛素连接酶活性是 CtIP 在 DSB 上积累所必需的,从而促进末端切除和 Rad51 加载。总之,这些数据表明 FA 核心复合物和 FANCD2 在促进 ICL 和 DSB 修复方面具有双重基因组维护功能。
欧盟委员会 (EC) 正在制定可持续产品倡议 (SPI),该倡议涉及将生态设计指令的范围扩大到尽可能广泛的产品,并开发欧洲数字产品护照 (DPP)。DPP 是 i) 唯一产品标识符和 ii) 与此唯一标识符相关的不同价值链参与者收集的数据的组合。这些数据可能包括产品的特性以及有关其价值链和生命的信息(动态数据)。CE 中的材料、组件、产品和资产的智能管理需要大量信息。如今,这些信息对于可以使用它的人来说并不容易获得,这不仅导致消费者、生产者和整个经济的巨大价值损失,而且还造成污染和浪费。