C-SRC激酶Wuxiang Mao的选择性和有效的Protac Degrader,Nathalie M. Vandecan,Christopher R. Bingham,A Pui Ki Tsang,A Peter Ulintz,Brache ulintz,B Rachel Sexton,Daniel A. Bochar,Daniel A. Bochar,A Sofia D. Merajver,A Sofia D. Merajver,b and b and Matthew B.Softhew B. suellner*seellner*a。密歇根大学化学系,密歇根州安阿伯市930 N. University Ave.,48109。b。 密歇根大学内科系,1500 E. Medical Ave.,Ann Arbor,MI 48109。 使用链接到E3连接酶配体的dasatinib的摘要,我们确定了有效的双CSK/C-SRC Protac Degrader。 然后,我们用构象选择性类似物代替了dasatinib,稳定c-shelix c-Src的构象。 使用A c螺旋外配体,我们确定了一种对C-SRC有效且有选择性的Protac。 使用我们的C-SRC Protac,我们确定了与癌细胞增殖相比,C-SRC降解的药理优势。 引言蛋白激酶(PKS)在细胞信号传导和调节关键生物学过程(包括增殖,分化和凋亡)中起着至关重要的作用[1-3]。 对于许多激酶,对基因组敲低(例如siRNA)与激酶抑制剂的药理干预之间的细胞信号传导有不同的作用[4-6]。 基因组和药理学干预之间的这种断开是由于激酶的非催化功能仅被基因组敲低而破坏[4-6]。 因此,激酶指导的Protac代表了靶向激酶的潜在进步,该激酶非催化功能对于细胞信号很重要。密歇根大学化学系,密歇根州安阿伯市930 N. University Ave.,48109。b。密歇根大学内科系,1500 E. Medical Ave.,Ann Arbor,MI 48109。 使用链接到E3连接酶配体的dasatinib的摘要,我们确定了有效的双CSK/C-SRC Protac Degrader。 然后,我们用构象选择性类似物代替了dasatinib,稳定c-shelix c-Src的构象。 使用A c螺旋外配体,我们确定了一种对C-SRC有效且有选择性的Protac。 使用我们的C-SRC Protac,我们确定了与癌细胞增殖相比,C-SRC降解的药理优势。 引言蛋白激酶(PKS)在细胞信号传导和调节关键生物学过程(包括增殖,分化和凋亡)中起着至关重要的作用[1-3]。 对于许多激酶,对基因组敲低(例如siRNA)与激酶抑制剂的药理干预之间的细胞信号传导有不同的作用[4-6]。 基因组和药理学干预之间的这种断开是由于激酶的非催化功能仅被基因组敲低而破坏[4-6]。 因此,激酶指导的Protac代表了靶向激酶的潜在进步,该激酶非催化功能对于细胞信号很重要。密歇根大学内科系,1500 E. Medical Ave.,Ann Arbor,MI 48109。使用链接到E3连接酶配体的dasatinib的摘要,我们确定了有效的双CSK/C-SRC Protac Degrader。然后,我们用构象选择性类似物代替了dasatinib,稳定c-shelix c-Src的构象。使用A c螺旋外配体,我们确定了一种对C-SRC有效且有选择性的Protac。使用我们的C-SRC Protac,我们确定了与癌细胞增殖相比,C-SRC降解的药理优势。引言蛋白激酶(PKS)在细胞信号传导和调节关键生物学过程(包括增殖,分化和凋亡)中起着至关重要的作用[1-3]。对于许多激酶,对基因组敲低(例如siRNA)与激酶抑制剂的药理干预之间的细胞信号传导有不同的作用[4-6]。基因组和药理学干预之间的这种断开是由于激酶的非催化功能仅被基因组敲低而破坏[4-6]。激酶指导的Protac代表了靶向激酶的潜在进步,该激酶非催化功能对于细胞信号很重要。c-Src是一种酪氨酸激酶,是发现的第一个原始癌基因,并且在癌症中经常过表达[7-9]。虽然机制仍然鲜为人知[9],但C-SRC过表达的程度通常与恶性肿瘤的转移潜力相关,并且抑制C-SRC已被证明会降低小鼠的乳腺癌转移[10]。c-Src通过遗传敲低被验证为许多实体瘤的目标。然而,药理学抑制(无论是在临床还是临床前模型中)导致信号传导表型与遗传敲低不同[10]。敲低(例如,siRNA),三阴性乳腺癌(TNBC)和基底膀胱癌表现出降低和侵袭特性[10,11]。不幸的是,对C-SRC的小分子抑制剂的研究(包括:dasatinib,bosutinib和Ponatinib)未能概括从C-SRC的遗传敲低的强抗癌表型中,并且在诊所没有成功[10,11]。Protac提供了一种化学敲低的手段[12],因此我们有兴趣开发C-SRC的Protac。结果和讨论设计和评估C-SRC定向Protacs。为了识别C-SRC的PROTAC,我们设想将dasatinib(一种有效的C-SRC/ABL激酶抑制剂)与Thalidomide(Cereblon E3连接酶配体)结合在一起。据报道,基于dasatinib的daSatinib的protac是为了降解C-ABL和BCR-ABL,包括DAS-6-2-2-6(图1)[13]。我们希望DAS-6-2-2-6能够降解C-SRC,但是我们观察到Cal148细胞中C-SRC没有降解(18小时时100 nm)。与Protac文献一致[14],我们假设在DAS-6-2-2-6中发现的柔性且较长的接头不适合降解C-SRC。
自从格列卫(伊马替尼)在临床上用于治疗癌症(20 世纪 90 年代)以来,靶向治疗的概念就越来越受欢迎。这种方法基于对特定疾病发病机制背后的生物学机制的基本了解,以及靶向灭活该机制以进行治疗的可能性。主要思想是这种靶向作用可以消除致病因素,同时最大程度地减少对完整细胞的损害。由于药物化学和相关学科的进步,临床医生拥有数十种靶向药物,目前有数百种化合物正在临床试验中。这些药物中的大多数靶向具有酶特性的蛋白质,例如蛋白激酶、表观遗传标记等。这些靶标的结构得到了详细研究,从而可以合成大型靶向化合物库并识别具有高抑制活性和选择性的先导化合物。非酶蛋白的失活更具挑战性。其中包括信号级联的重要元素、众多结构蛋白、
背景 PROTAC(蛋白水解靶向嵌合体)代表了一类有前途的新型药物,可选择性地降解细胞中的目标蛋白质。PROTAC 是具有两个功能端的小分子,一个小分子端与目标蛋白质结合,另一端与 E3 泛素连接酶结合。PROTAC 成分将泛素连接酶募集到目标蛋白质,导致其泛素化并随后被蛋白酶体降解。PROTAC 已被开发用于多种癌症靶标,包括致癌激酶、表观遗传靶标和最近的 KRAS G12C 蛋白,其中几种目前正在临床试验中针对各种癌症进行测试。在临床前癌症模型中已报告对 PROTAC 的获得性耐药性,这表明 PROTAC 疗法对癌症的长期益处可能有限。因此,需要一种能够克服对 PROTAC 的耐药性并提供持久药物反应的治疗方法。发明概述
11 lrrk2,富含亮氨酸的重复激酶2; PK/PD,药代动力学 - 药物动力学; CSF,脑脊液; BMP,BIS(单酰基甘油)磷酸盐:在2024 Keystone Summit上给出的溶酶体脂质数据:靶向蛋白质降解
一种多功能的USB可充电战术灯,专为向下范围的应用而设计。多电池的多功能性意味着您可以使用一次性电池在没有充电源时为光供电。它具有尾巴开关,以瞬时或恒定操作。
说明:Protac®2.0Rail Mount是一种2,000个lumen战术武器手电筒,使用专有的Streamlight SLLIGHT SL-B50®受保护的Li-Ion可充电电池组。它具有战术尾盖开关,以瞬间或恒定操作以及三个不同的用户选择程序。还可以使用远程压力开关选项。SL-B50®直接通过电池组主体中的USB-C端口充电。键入电池以确保充电端口的正确对齐。包括USB-C线。案例材料:6000系列机加工的飞机铝,带有II型MIL规格氧化阳极氧化表面。可用黑色。尺寸:长度:6.30英寸(16厘米)头直径:1.46英寸(3.7厘米)的身体直径:1.02英寸(2.6厘米)重量:9.06盎司(257 g),带有(1)Streamlight SLLIGHT SLLIGHT SLLIGHT SL-B50®受保护的Li-ion USB-ION USB可呼叫电池包(包括在购买中)。镜头:玻璃带有抗反射涂层;垫片密封的光源:LED技术,不透过50,000小时的终身照明输出:高:2,000流明,17,700 Candela Peak Beam强度,266 m的光束距离。低:250个流明,2,150 Candela峰值束强度,93 m梁距离。完全调节的输出,以在整个电池寿命中保持一致的管腔性能。开/关:多功能,按钮尾巴开关,瞬间和锁存在操作上。可选的远程开关仅在瞬间和瞬间/锁存版本中可用。瞬时,可变强度或频闪模式的单手操作。在6小时内充电。功能:极端亮度的LED技术。TEN-TAP®可编程开关允许用户选择三个不同程序之一:高/频闪(工厂默认),仅高或低/高。运行时间:高:2.5小时;低:11小时;频闪:4.5小时所有运行时间索赔是初始输出的10%。电池:(1)Streamlight SL-B50®受板上安全控制的可保护的Li-Ion USB可充电电池组,4,900mAh。ip67级;防尘和防水1米30分钟。所有开口O形圈密封。测试了2米的冲击电阻。 安全地适合广泛的武器。 直接使用MIL-STD-1913(Picatinny)Rails或M-Lok®和M-Lok®兼容铁路系统的枪支。 广泛测试了耐撞击的结构。 序列化以供阳性识别。 批准:符合适用的英国和欧洲社区指令CEC符合CEC的保修:Streamlight的终身保修有限的可选配件:USB-C充电线,远程压力开关,SL-B50®电池组测试了2米的冲击电阻。安全地适合广泛的武器。直接使用MIL-STD-1913(Picatinny)Rails或M-Lok®和M-Lok®兼容铁路系统的枪支。广泛测试了耐撞击的结构。序列化以供阳性识别。批准:符合适用的英国和欧洲社区指令CEC符合CEC的保修:Streamlight的终身保修有限的可选配件:USB-C充电线,远程压力开关,SL-B50®电池组
抗癌药物耐药性是持续成功治疗恶性肿瘤的主要障碍。目前发现,抑制癌症进展中指示的蛋白质的疗法由于获得性耐药性而失效,而获得性耐药性通常是由突变或过度表达的蛋白质靶标引起的。通过劫持细胞泛素蛋白酶体蛋白质降解机制,蛋白水解靶向嵌合体 (PROTAC) 为癌症治疗提供了一种具有各种潜在优势的替代治疗方式。过去 5 年,已经开发出针对多种已知癌症靶标的 PROTAC,这为以前无法治疗的恶性肿瘤患者提供了新的缓解选择,并为下一代化合物奠定了基础。PROTAC 的一个显着优势是,它们可以克服传统靶向疗法的一些耐药机制,这得到了最近许多研究的证据支持。最近,一些团体已经开始研究使用 PROTAC 成功降解导致癌症对一线治疗产生耐药性的突变靶标。在这篇评论中,我们重点分析了针对癌症抗性的 PROTAC 的发展以及在寻找新的成功疗法时赋予它的目标。
化疗作为传统的治疗方法,在癌症治疗过程中发挥着不可替代的作用。传统抗癌药物的主要缺点是大多选择性差、易产生耐药性(Mangal et al., 2017; Dong et al., 2020; Yuan et al., 2020),因此癌症的靶向治疗引起了人们的重视(Zhou Y. et al., 2020; Qi et al., 2020; Yu et al., 2020)。在此基础上,新靶点和小分子抑制剂(SMI)的发现成为强有力的治疗策略(Dong et al., 2018)。尤其是小分子激酶抑制剂的开发成为药物发现过程中最受广泛追捧的领域之一,并在癌症治疗中取得了巨大成就(Wu et al., 2015)。然而该治疗策略在成功之后也面临着与化疗同样的耐药性问题( Dong et al., 2020 ; Xu et al., 2020 )。因此,耐药性是癌症治疗的主要限制,亟待解决。近年来,一种针对疾病相关蛋白质进行降解的新策略引起了极大的关注。蛋白水解靶向嵌合体(PROTAC),也称为二价化学蛋白质降解剂,是一种通过 E3 泛素连接酶途径降解特定内源蛋白质的异双功能分子( Potjewyd et al., 2020 )。它通过适当的连接子在结构上将目的蛋白(POI)结合配体与E3泛素连接酶(E3)配体连接起来(Buckley et al., 2015; Zhang et al., 2019; Kregel et al., 2020; Vollmer et al., 2020)。PROTAC技术的潜在优势可能弥补传统药物治疗的不足,从而促进其快速发展(Toure and Crews, 2016; Sun and Rao, 2020)。本文重点介绍PROTAC技术的机制、研究进展,并总结该降解方法的优势。
蛋白水解靶向嵌合体 (PROTAC) 已被开发为一种有用的靶向蛋白质降解技术。双功能 PROTAC 分子由目标蛋白质 (POI) 的配体(主要是小分子抑制剂)和 E3 泛素连接酶 (E3) 的共价连接配体组成。与 POI 结合后,PROTAC 可以募集 E3 进行 POI 泛素化,然后进行蛋白酶体介导的降解。PROTAC 补充了基于核酸的基因敲除/敲除技术,用于靶向蛋白质减少,并可以模拟药理学蛋白质抑制。迄今为止,已成功开发出靶向约 50 种蛋白质的 PROTAC,其中许多是经过临床验证的药物靶标,其中几种正在进行癌症治疗的临床试验。本文回顾了 PROTAC 介导的癌症(特别是血液系统恶性肿瘤)中关键癌蛋白的降解。总结了这些PROTAC的化学结构、细胞和体内活性、药代动力学和药效学。此外,还讨论了PROTAC技术在癌症治疗中的潜在优势、挑战和前景。
1 阿尔巴塞特大学医院转化研究部,02008 阿尔巴塞特,西班牙; mariadelmar.noblejas@uclm.es(MdMN-L.); evamaria.galan@uclm.es(EMG-M.); raquel.lrosa@uclm.es (RL-R.); david.tebar@uclm.es(DT-G.); mgomezj@sescam.jccm.es(MG-J.); mburgosloz@unav.es (MB) 2 地区生物医学研究中心 (CRIB),卡斯蒂利亚-拉曼恰大学 (UCLM),02008 阿尔瓦塞特,西班牙 3 癌症分子和皮肤生物学研究所,CSIC、IBSAL 和 CIBERONC,3707 萨拉曼卡,西班牙; lgandullo@usal.es (LG-S.); atanasio@usal.es (AP) 4 卡斯蒂利亚-拉曼恰大学(UCLM)护理学院,02008 阿尔瓦塞特,西班牙 5 西班牙卫生研究所(IdISSC)和圣卡洛斯医院(HCSC)医学肿瘤科实验治疗学部,2040; cnietoj@salud.madrid.org 6 纳瓦拉大学药学与营养学院营养、食品科学与生理学系,31008 潘普洛纳,西班牙 * 通讯地址:alberto.ocana@salud.madrid.org