相比其他递送方法,在体内和体外递送 CRISPR 核糖核蛋白 (RNP) 用于基因组编辑具有重要优势,包括减少脱靶和免疫原性效应。然而,由于效率低和细胞毒性,在某些细胞类型中有效递送 RNP 仍然具有挑战性。为了解决这些问题,我们设计了可自我递送的 RNP,它们可以促进有效的细胞摄取并进行强大的基因组编辑,而无需辅助材料或生物分子。与 CRISPR-Cas9 蛋白融合的细胞穿透肽 (CPP) 的筛选鉴定出能够有效编辑神经祖细胞基因组的有效构建体。对这些融合蛋白的进一步设计建立了 C 端 Cas9 融合,融合物为三个拷贝的 A22p,A22p 是一种源自人类 semaphorin-3a 的肽,与其他构建体相比,其编辑效率显着提高。我们发现,当直接注射到小鼠纹状体中时,可自我递送的 Cas9 RNP 可在临床相关基因中产生强大的基因组编辑。总体而言,可自我递送的 Cas9 蛋白为体外和体内基因组编辑提供了一个简便有效的平台。
摘要类风湿关节炎(RA)具有许多其他自身免疫性疾病,包括易感基因的存在和疾病特异性自身抗体的存在。抗硝化蛋白抗体(ACPA)是RA中的标志性自身抗体,抗柠檬酸蛋白免疫反应与疾病发病机理有关。对导致抗硝化蛋白免疫的免疫途径的洞察力不仅有助于理解RA发病机理,而且还可能有助于阐明其他自身抗体阳性自身免疫性疾病的相似机制。同样,在其他人类自身免疫性疾病中汲取的教训可能与了解RA的潜在驱动因素有关。在这篇综述中,我们将总结一些近年来获得的抗硝化蛋白反应及其临床关联的生物学的新见解。这些见解包括在ACPA的可变结构域中鉴定聚糖,意识到ACPA对蛋白质的其他翻译后修饰具有性能反应,以及对粘膜位点对ACPA响应发展的促进作用的新认识。这些发现将反映在其他人(自身免疫性)疾病中获得的新兴概念,这些疾病以特异性自身抗体为特征。以及对遗传和环境风险因素的最新了解以及对微生物组如何有助于抗体形成的新观点,这些进步融合在一起,逐渐清晰地了解了RA进展中修饰抗原的B细胞反应。
polycomb抑制性复合物2(PRC2)与许多RNA结合,并已成为报告非编码RNA(LNCRNA)调节基因表达多长时间的核心参与者。然而,支持特定的LNCRNA-PRC2相互作用的生化证据与功能性证据之间存在越来越多的差异,这表明PRC2通常对于lncRNA功能是可分配的。在这里,我们重新审查了PRC2的RNA结合的证据,并表明许多报告的相互作用可能不会在体内发生。使用人和小鼠细胞系中体内交联的RNA-蛋白复合物的纯化,我们观察到损失可检测到的RNA与PRC2结合的可检测到的RNA损失,并以前报道的与染色质相关的蛋白相关的蛋白质与其他相关蛋白相关蛋白(尽管CTCF,YY1等)与其他(CTCF,YY1等)结合(其他),但仍绘制了其他(其他)插入其他(其他)(其他)(其他)(其他)(其他)(其他)(其他)(inter)(其他)(其他)(其他)(TEET)(inter)(其他)(inter)(其他)(inter)(其他)(inter)。综上所述,这些结果表明,重新评估RNA结合在编排各种染色质调节机制方面的广泛作用。
睫状缺陷引起几种纤毛病,其中一些纤毛发作迟到,这表明cilia被积极维持。仍然,我们对维护的机制的理解很糟糕。在这里,我们显示了果蝇黑色素果ift88(DM IFT88/nompb)继续沿着完全形成的感觉纤毛移动。我们进一步识别无活跃的,果蝇听力和负性持续性行为的TRPV通道亚基,以及尚未表征的果蝇鸟叶尼犬环酶2D(DM GUCY2D/ CG34357)作为DM IFT88货物。我们还显示了DM IFT88与循环酶的细胞内部分的结合,该部分在几种退化性视网膜疾病中是进化保守和突变的,对于DM GUCY2D的纤毛定位而言是不可能的。最后,成年纤维中DM IFT88和DM GUCY2D的急性敲低导致纤毛功能的维持,障碍和刺激性刺激性的行为导致缺陷,但并未显着影响睫状超结构。我们得出的结论是,成人范围内听力的感觉睫状功能涉及DM IFT88及其至少两个信号传导跨膜货物,DM GuCy2D和无效的主动维护程序。
摘要 靶向蛋白质降解最近已成为药物发现的一种新选择。天然蛋白质半衰期预计会影响降解剂的功效,但它对靶向蛋白质降解的影响程度尚未得到系统探索。通过对蛋白质降解进行数学建模,我们证明靶向蛋白质的天然半衰期对降解剂诱导的蛋白质降解水平有显著影响,这可能会给筛选工作带来重大障碍。此外,我们还表明,在筛选短寿命蛋白质降解剂时,会阻碍蛋白质合成的药物(如 GSPT1 降解剂和一般细胞毒性化合物)会误认为是蛋白质降解剂。例如,在 GSPT1 降解和用阿霉素等细胞毒性药物治疗后,MCL1 和 MDM2 等短寿命蛋白质会消失。这些发现对靶标选择以及得出新药物作为真正的靶向蛋白质降解剂所需的对照实验类型具有重要意义。
DNA结合蛋白在不同的生物学过程中至关重要,包括DNA复制,转录,包装和染色质重塑。探索它们的特征和功能已与各种科学领域相关。计算生物学和生物信息学有助于研究DNA结合蛋白,补充了传统的分子生物学方法。虽然机器学习的最新进展使预测系统与生物信息学方法的整合在一起,但仍需要有可推广的管道来将未知蛋白识别为DNA结合,并评估他们识别的特定类型的DNA链。在这项工作中,我们介绍了Rudeus,这是一个python库,其具有层次分类模型,旨在识别DNA结合程序并评估特定的相互作用类型,无论是单链还是双链。Rudeus具有多功能管道,能够训练预测模型,通过监督学习算法协同蛋白质语言模型,并整合贝叶斯优化策略。训练有素的模型具有高性能,DNA结合识别的精确率为95%,单链和双链相互作用之间的辨别率为89%。Rudeus包括一个用于评估未知蛋白序列的探索工具,将其注释为DNA结合,并确定其识别的DNA链的类型。结构性生物信息学管道已被整合到Rudeus中,以通过DNA-蛋白质分子对接验证已鉴定的DNA链。这些全面的策略和直接实施表现出与高端模型的可比性,并增强了将其集成到蛋白质工程管道中的可用性。
抽象的生物氮固定,惰性N 2向代谢可触发的NH 3的转化仅由某些称为重18zotrophs的微生物进行,并由氮酶催化。a [7fe-9s-c-mo- r- homocitrate] - cofactor(指定为femo-CO)提供了催化位点,用于降低mo依赖性氮酶的n 2。因此,在模型真核生物(例如酿酒酵母)中实现FEAMO-CO形成,这是使它们具有MO依赖性生物氮固定能力的重要里程碑。femo-CO组装中的中心播放器是脚手架蛋白Nifen,在该蛋白质中,NIFB的[8FE-9S-C]前体的nifb-Co处理。先前的工作确定可以在酿酒酵母线粒体中产生NIFB-CO。在当前的工作中,在酿酒酵母中表达了来自不同重18zotrophs的Nifen基因的库,针对线粒体,并针对产生可溶性硝基蛋白质复合物的能力进行了调查。许多这样的nifen变体在重生A. vinelandii中异源产生时,都支持FEMO-CO形成。然而,其中只有三个以可溶性形式积聚在有氧培养的酿酒酵母的线粒体中。在体外FEAM-CO合成测定中有两个变体活跃。Nifen,Nifb和NIFH蛋白(所有这些物种都从酿酒酵母线粒体中产生并纯化),以建立成功的FEMO-CO生物合成途径。这些发现表明,将各种种间氮酶Feemo-CO组件组件结合在一起可能是一种有效的,也许是实现和优化真核眼球生物体中氮固定的唯一方法。
简介:口腔微生物组通常代表人体高度复杂的微生物组生态系统。口服微生物参与人类疾病,包括口腔炎症,粘膜疾病,牙周疾病,牙齿衰减和口腔癌。另一方面,口腔微生物还会引起内分泌疾病,消化功能和神经功能障碍,例如糖尿病,消化系统疾病和阿尔茨海默氏病。注意到,口服微生物的蛋白质在这些严重疾病中起着重要作用。对口腔微生物有充分的了解可能有助于分析相关疾病的游行。此外,高维特征和不平衡数据导致口服微生物问题的复杂性,这几乎无法通过传统的实验方法来解决。
摘要近年来生物制剂在各种疾病中的使用已大大增加。中风是一种脑血管疾病,是第二大最常见的死亡原因,也是全球发病率高的残疾原因。用于用于治疗急性缺血性中风的生物制剂,Alteplase是唯一的溶栓剂。同时,当前的临床试验表明,两种重组蛋白,Tenecteplase和非免疫原性葡萄球菌酶,作为用于急性缺血性中风治疗的新溶栓剂的最有前途的。此外,使用干细胞或类器官进行中风治疗的基于干细胞的治疗在临床前和早期临床研究中显示出令人鼓舞的结果。这些急性缺血性中风的策略主要依赖于未分化的细胞的独特特性来促进组织修复和再生。但是,在这些方法成为常规临床用途之前,仍有一段巨大的旅程。这包括优化细胞输送方法,确定理想的细胞类型和剂量以及解决长期安全问题。本综述介绍了缺血性中风中溶栓治疗的当前或有希望的重组蛋白,并突出了中风治疗中干细胞和大脑器官的前景和挑战。
https://doi.org/10.26434/chemrxiv-2023-5455b-v2 ORCID:https://orcid.org/0000-0003-1728-1163 内容未经 ChemRxiv 同行评审。许可:CC BY 4.0