大脑中的淀粉样蛋白沉积与许多神经退行性疾病有关。 因此,淀粉样蛋白的形成和分解是神经变性的关键过程,包括淀粉样蛋白的细胞间传播。 然而,由于缺乏适当的技术和实验系统,淀粉样蛋白分解的分子机制已被鲜为人知。 为了解决淀粉样生物学中的这个长期存在的问题,我们的目标是通过开发新的生物物理方法和侵入性较小的体内成像技术来破译淀粉样蛋白分解过程。 此外,我们将开发出新的技术,用于在神经退行性疾病的细胞和小鼠模型中选择性分解和降解。 这些研究将为治疗发展带来重要意义。大脑中的淀粉样蛋白沉积与许多神经退行性疾病有关。因此,淀粉样蛋白的形成和分解是神经变性的关键过程,包括淀粉样蛋白的细胞间传播。然而,由于缺乏适当的技术和实验系统,淀粉样蛋白分解的分子机制已被鲜为人知。为了解决淀粉样生物学中的这个长期存在的问题,我们的目标是通过开发新的生物物理方法和侵入性较小的体内成像技术来破译淀粉样蛋白分解过程。此外,我们将开发出新的技术,用于在神经退行性疾病的细胞和小鼠模型中选择性分解和降解。这些研究将为治疗发展带来重要意义。
心血管疾病(CVD)是全球死亡的主要原因。过去几十年来,全球研究人员的努力令人振奋,以揭示CVD的基本分子机制。然而,直到最近才具有蛋白质稳态或蛋白质量作为关键细胞过程,在心力衰竭和心肌病的背景下引起了人们的注意(Wang and Robbins,2006)。蛋白质症涉及复杂且严格调节的过程,以平衡生产,折叠,交易和细胞蛋白的降解(Henning and Brundel,2017)。蛋白质合成和折叠由专门的系统(统称称为蛋白质质量控制(PQC))监测,其中伴侣,泛素 - 蛋白酶体系统(UPS),有时自动噬是作为中心参与者的。PQC损伤或不足可能会导致异常的蛋白质聚集,从而损害UPS并进一步增加蛋白毒性应激,这最终可能导致细胞死亡(Wang and Wang,2020年)。由于工作心肌细胞中极高的机械性,热和氧化应激,维持其蛋白质癌症尤其具有挑战性,但对于这些细胞和心脏的健康和功能至关重要(Henning and Brundel,2017年)。现在甚至被认为是大量心脏疾病子集的标志(Sanbe等,2004; Hofmann等,2019; Wang and Wang,2020)。但是,我们仍然远没有理解调节心脏蛋白质的确切机制。在此特别感兴趣的是UPS。与此一致,Trogisch等。本研究主题中文章的目的是阐明心脏中蛋白质的尚未发现的方面及其在心脏健康和疾病中的作用。UPS介导的蛋白水解是去除异常蛋白质的主要降解系统。已在几种人和实验性心脏病中报道了UPS的改变(Mearini等,2008; Schlossarek等,2014)。研究了20S蛋白酶体的LMP2是否缺乏LMP2,从而降低了蛋白酶体的可塑性,在慢性β-肾上腺素能刺激下撞击心脏重塑和功能,这是对心脏衰竭发展的主要贡献。虽然LMP2构成敲除(KO)小鼠的心脏功能在不挑战的条件下保持不变,但连续的β-肾上腺素能
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年4月30日。; https://doi.org/10.1101/2023.09.12.556394 doi:biorxiv Preprint
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月2日发布。 https://doi.org/10.1101/2025.02.28.640897 doi:Biorxiv Preprint
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月13日。 https://doi.org/10.1101/2023.03.27.534444 doi:Biorxiv Preprint
突触核酸是神经退行性疾病,其特征在于含有lewy体的α-突触核蛋白的积累。泛素化是一种关键的翻译后修饰,已被公认为是α-突触核蛋白的细胞动力学的关键调节剂,影响其降解,聚集和相关的神经毒性。本综述对当前对α-突触核蛋白泛素化的理解及其在突触核苷的发病机理中的作用,特别是在帕金森氏病的背景下。我们探索了负责α-突触核蛋白泛素化的分子机制,重点是主要通过内体溶酶体途径发生的E3连接酶和去渗透过程中涉及的降解过程中的作用。审查进一步讨论了这些机制的失调如何有助于α-核蛋白聚集和LB形成,并为将来研究α-突触核蛋白泛素化的作用提供了建议。理解这些过程可能会阐明潜在的治疗途径,这些途径可以调节α-突触核蛋白泛素化,以减轻其在突触核酸病变中的病理影响。
也许是最著名的“细胞的动力”,因为它们在众多细胞活性中所需的ATP产生中的作用。线粒体已成为重要的信号细胞器。在这里,我们首先专注于通过促进蛋白质稳态(蛋白质)的线粒体 - 核交流介导的信号通路。我们检查了秀丽隐杆线虫中的线粒体展开的蛋白质反应(UPR MT),该蛋白质由带有线粒体和核靶向序列的转录因子调节,哺乳动物的综合应激反应,以及通过线粒体代谢物调节染色质。在第二部分中,我们探讨了线粒体到核交流在先天免疫和炎症调节中的作用。也许与它们的核病性有关,线粒体港分子也在病毒和细菌中发现。如果这些分子积聚在细胞质中,它们会引起与病毒或细菌感染相同的先天免疫反应。
crispr screens in IPSC-Derived neurons reveal principles of tau protests avi J. Samelson 1 , Nabela Ariqat 1 , Justin McCetney 2,3,4 J. Travaglini 6 , Victor L. lam 7 , Darn Goodness 1 , Gay Dixon 1 , Emily Marzette 1 , Julianne Jin 1 , Ruilin Tiian 1 , Eric tse 1,8 , Rome Abskharon 9,Henry Pan Lawrence 3,10,Jason E. Geswicki 1,7,David Eisenberg 9,11,Nicholas M.因此12,Daniel R. Southworth 1,8,John D. Gross 7,Li Gan 5<美国加利福尼亚州旧金山大学神经退行性疾病DIV加利福尼亚大学旧金山分校,定量生物科学研究所(QBI),美国加利福尼亚州旧金山,美国3。加利福尼亚大学SAN
蛋白质tau的抽象聚集定义了tauopathies,其中包括阿尔茨海默氏病和额颞痴呆。特定的神经元亚型有选择地容易受到tau聚集的影响,随后的功能障碍和死亡,但潜在的机制尚不清楚。系统地揭示了控制人类神经元中Tau聚集体积累的细胞因子,我们在IPSC衍生的神经元中进行了基于基因组CRISPRI的修饰筛网。屏幕发现了预期的途径,包括自噬,以及意外的途径,包括ufmylation和GPI锚构成。我们发现E3泛素连接酶CUL5 SOCS4是人类神经元中tau水平的有效修饰符,泛素化tau,与小鼠和人类中的auopanty的脆弱性相关。线粒体功能的破坏会促进tau的蛋白酶体错误处理,从而产生tau蛋白水解片段
©2022。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/可通过https://doi.org/10.1016/j.chembiol.2022.01.002获得发布版本。