我们提出了一种替代方法,该方法将模式识别表示为使用退火的二次无约束的二进制优化(QUBO; np-hard概率),这是一种符合目标函数的全局最小值的过程 - 在我们的情况下,是二进制变量而不是二进制变量的二等函数。术语nealing的灵感来自重复加热和冷却的冶金过程,以消除晶格结构中的位错。同样,此处使用的是,退火优化过程使用随机的“热”闪光来找到目标函数的更好结果,并结合了“冷却”,从而可以大大降低接受较差结果的可能性。量子退火基于绝热定理:如果对其作用的扰动很小,并且不足以跨越地面和第一个激发态之间的间隙,则系统将保留在其本征状态。因此,有可能用简单的基态哈密顿式初始化量子退火器,并将其绝热地发展到所需的,复杂的,问题的哈密顿量。进化后,量子弹性(例如隧道)将退火器带入了后者的基态,代表了问题的全球最小解决方案。量子退火的所有步骤均在整个系统上运行,因此所需的总时间原则上与系统大小无关。因此,只要退火器上的问题拟合,总的运行时间应该是恒定的,并且足够大的量子系统(运行一个大问题)应优于基于软件的问题。
除了提供比我们之前的混合求解器更好的性能之外,该求解器还首次提高了开发人员在我们的量子计算机上构建应用程序的抽象级别。具体来说,如果你是一名数据科学家或数据分析师,并且习惯于使用线性规划、二次规划或混合整数规划来构建应用程序,那么我们的新混合求解器现在可以采用这些应用程序模型,并自动将它们映射到量子计算机。
本文研究并比较了飞机的被动和主动起落架系统以及飞机滑行时由于跑道不平整引起的动态响应。跑道不平整引起的动态载荷和振动会导致机身疲劳、乘客不适并降低飞行员控制飞机的能力。本文的目标之一是获得全飞机模型的被动和主动起落架的数学模型。本文的主要目的是为主动起落架系统设计线性二次调节器 (LQR),该系统选择悬架系统的阻尼和刚度性能作为控制对象。有时,由于主动控制系统中的非线性执行器导致过程动态变化、环境条件变化和扰动特征变化,传统的反馈控制器可能无法很好地发挥作用。为了克服上述问题,我们设计了一个基于线性二次调节器的二阶系统控制器。通过数值模拟将主动系统的性能与被动起落架系统进行了比较。本论文的结果与参考文献中提到的先前工作相比,表明机身加速度提高了 37.04%,机身位移提高了 20%,减震支柱行程提高了 13.8%。主动起落架系统能够通过减少
我们研究快速转发量子演化问题,即某些量子系统的动力学可以用演化时间次线性的门复杂度来模拟。我们提供了一个快速转发的定义,该定义考虑了量子计算模型、诱导演化的汉密尔顿量以及初始状态的属性。我们的定义考虑了一般情况的任何渐近复杂性改进,并用它来演示几个量子系统中的快速转发。特别是,我们表明,一些局部自旋系统(例如那些具有置换不变性的系统)的汉密尔顿量可以使用有效的量子电路转化为块对角形式,可以指数级快速转发。我们还表明,某些类的半正定局部自旋系统(也称为无挫折系统)可以多项式地快速转发,前提是初始状态由足够低能量的子空间支持。最后,我们表明,在一个量子门分别为特定费米子或玻色子算子的指数的模型中,所有二次费米子系统和数值守恒二次玻色子系统都可以指数级快速转发。我们的结果扩展了以前已知可以快速转发的物理汉密尔顿量类别,而不一定需要有效地对角化汉密尔顿量的方法。我们进一步建立了快速转发和精确能量测量之间的联系,这也解释了多项式改进。
§2:预赛。MPKC的简短历史和UOV背后的一般思想以及本提交中的符号在第2节中介绍。多元公共密钥密码系统(MPKC)可以追溯到1980年代,从那时起,许多领先的密码学家一直在尝试构建各种类型的MPKC。例如,两个多元数字签名方案,即,Rainbow [18]和Gemss [16]进入NIST PQC竞赛的第三轮[1]。在MPKC中,公共/秘密密钥对由多元多项式组成,MPKC的硬度与求解求解多元方程系统的硬度牢固地连接在一起。多年研究表明,多元多项式非常适合构建数字签名方案[19,31,42,42,35,16,12,29]。以UOV签名方案[35]为例。一般而言,UOV中的秘密键是(f,t),其中f:f n q→f m q是一个特定的二次图,通常称为中央映射,因为它在UOV中的关键作用,可逆线性转换t:f n q→f n q用于“隐藏”公共密钥中心地图的结构;此外,关联的公钥是p = f o,
- 算术和计算:分数;索引规则; SI单位;科学符号;舍入和估计;显着的数字;准确性和精度;使用计算器。- 基本代数评论:公式中的替代;重新安排公式;比例推理。- 解释:函数;图 - 线性,抛物线,对数,指数;线性方程,二次方程。- 不确定性和概率:入门概率;基本统计;描述性统计;随机变量和概率分布;正态分布;误差的治疗和评估;入门假设检验;入门L
人们认为,模拟多体量子系统的动力学是量子计算机能够显示出优于传统计算机的量子优势的首批领域之一。噪声中型量子 (NISQ) 算法旨在有效利用当前可用的量子硬件。对于量子模拟,已经提出了各种类型的 NISQ 算法,它们各有优势,也各有挑战。在这项工作中,我们提出了一种新算法,即截断泰勒量子模拟器 (TQS),它继承了现有算法的优点并减轻了一些缺点。我们的算法没有任何经典量子反馈回路,并通过构造绕过了荒芜高原问题。我们的混合量子经典算法中的经典部分对应于具有单个二次等式约束的二次约束二次规划 (QCQP),它允许半定松弛。基于 QCQP 的经典优化最近被引入作为量子辅助特征值求解器 (QAE) 中的经典步骤,QAE 是用于汉密尔顿基态问题的 NISQ 算法。因此,我们的工作为汉密尔顿基态问题的 NISQ 算法和汉密尔顿模拟提供了概念上的统一。我们将基于微分方程的 NISQ 算法(如量子辅助模拟器 (QAS) 和变分量子模拟器 (VQS))恢复为我们算法的特例。我们在当前云量子计算机上的一些小例子上测试了我们的算法。我们还提供了一种系统的方法来提高我们算法的准确性。
我们引入了一种量子算法来计算金融衍生品的市场风险。先前的研究表明,量子振幅估计可以使目标误差的衍生品定价速度成二次方加速,我们将其扩展到市场风险计算中的二次误差缩放优势。我们表明,采用量子梯度估计算法可以在相关市场敏感度(通常称为希腊值)的数量上带来进一步的二次优势。通过对实际感兴趣的金融衍生品上的量子梯度估计算法进行数值模拟,我们证明我们不仅可以成功估计所研究示例中的希腊值,而且实践中的资源需求可以明显低于理论复杂性界限所预期的水平。这一在金融市场风险计算中的额外优势降低了 Chakrabarti 等人估计的金融量子优势所需的逻辑时钟速率。 [Quantum 5, 463 (2021)] 提高了 ∼ 7 倍,从 50MHz 提高到 7MHz,即使对于按行业标准计算的希腊字母数量不多的(四个)也是如此。此外,我们表明,如果我们有足够的资源,量子算法可以在多达 60 个 QPU 上并行化,在这种情况下,实现与串行执行相同的总体运行时间所需的每个设备的逻辑时钟速率将约为 100 kHz。在整个工作过程中,我们总结并比较了可用于计算金融衍生品市场风险的几种不同的量子和经典方法组合。
支持向量机(SVM)被认为是最强大的分类算法之一,由于其强大的理论基础和概括性化合物,它被广泛用于相关应用中,例如生物信息信息和图像分类[Cervantes等。2020]。该算法的原始公式具有二次复杂性。为了降低算法的复杂性,[Suykens and Vandewalle 1999]对SVM的原始版本进行了最小二乘的重新印象,并将其转换为线性方程式的系统。这种转换允许应用更有效的线性系统分辨率技术,例如量子算法。
(自治)人工智能(AI)年:I学期:I研究分支:AIML课程代码年度和SEM代数和计算L T P C 20ABS9901 I-I 3 0 0 3课程成果:在学习课程后,学生将能够Co1。将矩阵代数技术应用于求解各种线性方程。二氧化碳。分析二次形式和平均值定理的线性变换。二氧化碳。将部分导数的基本概念应用于多变量函数。CO4。 评估笛卡尔,极性,圆柱和球形坐标的多个积分CO4。评估笛卡尔,极性,圆柱和球形坐标的多个积分