用于解决量子线性系统 (QLS) 问题的量子算法是近年来研究最多的量子算法之一,其潜在应用包括解决计算上难以解决的微分方程和提高机器学习的速度。决定 QLS 求解器效率的一个基本参数是 κ,即系数矩阵 A 的条件数,因为自从 QLS 问题诞生以来,我们就知道,在最坏情况下,运行时间至少与 κ 呈线性关系 [1]。然而,对于正定矩阵的情况,经典算法可以求解线性系统,运行时间扩展为 √κ,与不确定的情况相比,这是一个二次改进。因此,很自然地会问 QLS 求解器是否可以获得类似的改进。在本文中,我们给出了否定的答案,表明当 A 为正定时,求解 QLS 也需要与 κ 呈线性关系的运行时间。然后,我们确定了可以规避此下限的正定 QLS 的广泛类别,并提出了两种新的量子算法,其特点是 κ 的二次加速:第一种基于有效实现 A − 1 的矩阵块编码,第二种构建形式为 A = LL † 的分解来预处理系统。这些方法适用范围广泛,并且都允许有效地解决 BQP 完全问题。
特征选择需要从给定数据集中创建特征子集,以在原始数据集和选定特征集之间建立高度互信息 (MI) 共享 [ 1 , 2 ]。形式上,给定一组特征 F = { f 1 , f 2 , · · · , fm },其中 fi ∈ R d ,设 fi K 为 fi 在 K 中的维度所跨越的子空间上的投影,设 FK = { fi K } 为一组独立的 fi 。特征选择问题定义为从 F 中选择 K ⊂{ 1 , · · · , p },使得 K 保留最多信息。虽然特征选择是经典计算中一个研究得很深入的课题 [ 3 – 6 ],但在量子算法开发的背景下,特征选择仍然是一个相对较新的领域。这项任务被认为是 NP 难题 [ 7 ],在没有关于数据集结构的先验信息的情况下,量子算法的加速上限是二次的。此前,针对特征选择问题,人们提出了容错和效用规模量子算法 [8],但成功率参差不齐 [9-15]。其中,容错量子特征选择算法分别表现出多对数时间复杂度和二次加速比。多对数时间复杂度是由于问题中隐藏着某种代数结构,而二次加速比是当手头的 NP 完全问题的结构未知时量子算法的一般 Grover 加速比 [16]。其他量子方法是实现变分方法的效用规模量子算法。尽管分析此类算法很困难,但可以合理地假设,除非进一步利用问题结构,否则此类算法的量子加速比的上限就是 Grover 加速比。表示特征选择问题的一种常用方法是二次无约束优化问题 (QUBO),可以使用经典和量子计算框架进行处理。在量子计算机上,我们既可以使用 Grover 型容错算法,也可以使用 VQE [ 17 ] 或 QAOA 型 [ 18 ] 效用规模算法来求解该问题。另一方面,当量子算法能够利用已知结构时,加速比可以更显著,比如当简化为尖峰张量分解时,加速比可以达到四次方 [ 19 ],而当与计算 Betti 数相关时,加速比甚至可以达到指数级 [ 20 , 21 ]。这促使人们探究是否存在一类具有最小结构的问题,即用户对特征拥有稍多的信息,而量子算法可能会带来一些加速。这项工作旨在解决黑盒特征选择问题 (B2FS) 的这个问题,在某些假设下,将其表述为碰撞问题 [ 22 ]。利用 Brassard-Høyer-Tapp 算法(BHT 算法)[ 23 ],一种已知的碰撞问题解决方案,我们提供了对已经高效的经典概率算法进行多项式加速的证明。据我们所知,这是已知的第一个针对最小结构化特征选择问题的量子加速。
蛋白质的展开形式是氨基酸的线性序列。蛋白质结构预测试图找到给定蛋白质的天然构象,这在药物和疫苗开发中具有潜在的应用。经典的蛋白质结构预测是一个 NP 完全的、未解的计算问题。然而,量子计算有望提高经典算法的性能。在这里,我们在二维方格上的疏水-亲水模型中开发了一种量子算法,用于解决任何长度为 N 的氨基酸序列的问题,其速度比经典算法快二倍。这种加速是使用 Grover 的量子搜索算法实现的。该算法可用于任意长度的氨基酸序列。它包括三个阶段:(1)准备一个编码所有可能的 2 2 ( N − 1 ) 种构象的叠加态,(2)并行计算每种可能构象的坐标和能量,以及(3)找到具有最小能量的构象。空间上的渐近复杂度为 O ( N 3 ) ,而与经典算法相比,获得的加速比是二次的。我们已使用 Qiskit SDK 在 IBM Quantum 的 qasm 模拟器上成功模拟了该算法。此外,我们还通过计算找到正确构象的理论概率进一步证实了结果的正确性。
项目名称 理学学士 – 人工智能与机器学习 课程代码/名称 UGAM101 / 线性代数与微积分 年份/学期 I / ILTPC 3 1 0 4 课程目标: 1. 用矩阵方法解释线性方程组的解。 2. 讨论级数的收敛和发散。 3. 解释二元函数的偏导数和极值 4. 讨论标量和矢量函数的物理解释 5. 讨论矢量线、曲面和体积积分。 课程成果: 成功完成课程后,学生将能够: 1. 应用矩阵方法解线性方程组 2. 测试无限级数的收敛和发散。 3. 确定二元函数的极值。 4. 将向量微分算子应用于标量和向量函数 5. 用格林函数求解线、表面和体积积分,UNIT-I 矩阵 12 矩阵的秩、梯形、线性方程组的一致性、向量的线性依赖性、特征值、特征向量、特征值的性质、凯莱-哈密顿定理、二次型、通过线性变换将二次型简化为标准形式、二次型的性质。UNIT-II 无穷级数 12 数列和级数收敛的定义。正项级数 – 收敛的必要条件、比较检验、极限形式比较检验、达朗贝尔比率检验、拉贝检验、柯西根检验、交错级数、莱布尼茨规则、绝对和条件收敛。 UNIT-III 偏微分及其应用 12 两个或多个变量的函数,偏导数,高阶偏导数,全导数,隐函数的微分,雅可比矩阵,两个变量函数的泰勒展开式,两个变量函数的最大值和最小值。 UNIT-IV 向量微分学 12 标量和向量点函数,向量算子 Del,梯度,方向导数,散度,旋度,Del 两次应用于点函数,Del 应用于点乘积
摘要。本文在我的脑海中介绍了MQ(MQOM),这是一种基于求解二次方程多元系统(MQ问题)的难度的数字签名方案。MQOM已被列入NIST呼吁,以寻求额外的量词后签名方案。MQOM依赖于头部(MPCITH)范式的MPC来为MQ构建零知识证明(ZK-POK),然后通过Fiat-Shamir启发式将其转变为签名方案。基本的MQ问题是非结构化的,这是因为定义一个实例的二次方程系统是随机统一绘制的。这是多元加密策略中最困难,最研究的问题之一,因此构成了建立候选后量子加密系统的保守选择。为了有效地应用MPCITH范式,我们设计了一个特定的MPC协议来验证MQ实例的解决方案。与基于非结构化MQ实例的其他多元签名方案相比,MQOM实现了最短的签名(6.3-7.8 kb),同时保留非常短的公共钥匙(几十个字节)。其他多元签名方案基于结构化的MQ问题(不太保守),该问题要么具有大型公共密钥(例如uov)或使用最近提出的这些MQ问题的变体(例如mayo)。
非线性光学频率转化在光子学和基础上具有根本重要性,其应用是其应用的基础:与二次非线性的媒体中的总和和差异频率产生,允许其他不可接近的波长制度,以及超级非线值的超级范围的跨越跨度范围的巨大效果,超过了跨越的跨度范围,超过了跨越的跨度范围,这超出了越来越多的范围。用激光获得媒体。芯片集成的波导允许同时利用二次和立方效应,从而在非线性材料的整个透明度窗口中为多旋转的跨度光谱创造了前所未有的机会。设计这样的波导通常依赖于基础非线性过程的数字建模,但是,当涉及多个和级联的非线性过程时,这些过程变得极具挑战性。在这里,为了应对这一挑战,我们报告了一种新颖的数字模拟工具,用于混合和级联的非线性,该工具使用抗声明策略,以避免由有限的模拟带宽产生的杂散光。设计参数研究所需的专用五阶相互作用图片runge-kutta求解器,允许有效的数字模拟。表明,模拟结果与实验数据相吻合,并且仿真工具可作为开源python软件包(Pychi)获得。
我们研究低秩相位恢复问题,我们的目标是从一系列无相位线性测量中恢复 ad 1 × d 2 低秩矩阵。这是一个四阶逆问题,因为我们试图恢复通过一些二次测量间接观察到的矩阵因子。我们提出了使用最近引入的锚定回归技术解决该问题的方法。这种方法使用两种不同类型的凸松弛:我们用多面体搜索代替无相位测量的二次等式约束,并通过核范数正则化强制执行秩约束。结果是 d 1 × d 2 矩阵空间中的凸程序。我们分析了两种特定场景。在第一种情况下,目标矩阵为秩 1,观测结构对应于无相位盲反卷积。在第二种情况下,目标矩阵具有一般秩,我们观察一系列独立高斯随机矩阵的内积幅度。在每个问题中,我们都表明,只要我们能够访问质量足够好的锚定矩阵,锚定回归就能从接近最优数量的测量中返回准确的估计值。我们还展示了如何在无相盲反卷积问题中从最优数量的测量中创建这样的锚定,并针对一般秩问题给出了这方面的部分结果。
量子机器学习算法可以显著提高其速度,但其是否也能实现良好的泛化仍不清楚。最近,Wiebe 等人 [2016] 提出了两个量子感知器模型,它们使用 Grover 搜索比经典感知器算法实现了二次方的改进。第一个模型降低了与训练集大小相关的复杂度,而第二个模型则提高了感知器错误数量的界限。在本文中,我们介绍了一种混合量子-经典感知器算法,其复杂度低于经典感知器,泛化能力优于经典感知器。我们在样本数量和数据边际方面都比经典感知器实现了二次方的改进。我们推导出了算法返回的假设预期误差的界限,与使用经典在线感知器获得的误差相比,该界限更为有利。我们利用数值实验来说明量子感知器学习中计算复杂性和统计准确性之间的权衡,并讨论将量子感知器模型应用于近期量子设备的一些关键实际问题,由于固有噪声,其实际实施面临严峻挑战。然而,潜在的好处使得纠正这个问题值得。
我们通过在哈密顿量中加入极化项来研究超出偶极近似的封闭 n 级量子系统的控制景观。后者在控制场中是二次的。对奇异控制进行了理论分析,奇异控制是产生景观陷阱的候选对象。将考虑奇异控制存在的结果与偶极近似(即没有极化)中的结果进行了比较。在加入极化项后,对控制景观中陷阱的存在进行了数值分析,以产生超出偶极近似的幺正变换。通过创建许多随机哈密顿量(在单个控制场中包含线性和二次项),对这些控制景观进行了广泛的探索。发现的奇异控制都不是局部最优的。这一结果扩展了最近关于进行偶极近似的量子系统典型景观的大量研究。我们进一步研究了极化率的大小与优化产生的控制通量之间的关系。结果还表明,在原本不可控的偶极耦合系统中加入极化率项可以通过恢复可控性从相应的控制景观中移除陷阱。我们用数字方式评估了极化率项对特定三级 3 系统已知示例的影响,该系统的控制景观中有一个二阶陷阱。结果发现,极化率的增加会从景观中移除陷阱。讨论了这些模拟的一般实际控制含义。
1简介变形金刚及其关键组成部分近年来一直是生成模型的成功和改进的组成部分[Vaswani等。,2023]。他们的全球掌握领域,基于输入上下文动态计算的能力以及较大的能力使它们在许多任务中有用的构建块[Khan等人。,2022]。变压器体系结构的主要缺点是它们具有序列长度的计算复杂性的二次扩展,并符合时间和内存要求。想要在2048×2048分辨率下生成稳定的扩散图像时,最大的U-NET块的注意图在半精度中的记忆成本约为69 GB,为(1 batch×8头×(256 2代币)2×2 bytes)。这超出了大多数消费者GPU的功能[Zhuang等。,2023]。专门的内核,例如用于闪烁的注意力,其速度大大提高并降低了存储成本[Dao等。,2022],由于序列长度的不可行的二次缩放而引起的挑战是持久的。在寻求计算效率的过程中,稀疏注意的概念已获得关注。类似于令牌合并(Tome)的方法[Bolya等。,2023]及其在潜在图像扩散模型中的应用[Bolya and Hoffman,2023]已减少了以高相似性凝结令牌所需的计算时间,从而保留了