储能系统是将可再生能源有效整合到网格中以实现净零能源系统所必需的。在700 bar处压缩的氢是关键的储能技术之一。这项研究评估了固态氢储存的有效性,尤其是多孔材料中的物理吸附,以通过降低操作储罐压力来提高室温下的存储性能和安全性。我们以最大的储罐压力和往返储存效率来动态模型整个存储系统,将吸附材料与传统压缩进行比较。检查了不同循环频率和放电持续时间的不同能量系统的应用。结果表明,与压缩氢相比,基于多孔材料的系统对长期储能服务具有更高的效率。值得注意的是,大量密度在存储性能中起关键作用。例如,与压缩氢系统相比,散装密度为500 kg/m 3的IRMOF-1显示了70%的压力。相比之下,当其整体密度降低到130 kg/m 3时,最大储罐压力甚至比压缩罐高30%。我们强调需要进行全面的材料表征,从而强调了诸如大量密度在最大储罐压力和效率方面确定最大氢吸附物质的重要性。作为一般结果,最佳性能材料取决于特定的目标或系统要求,例如压力,数量,成本或重量。
问题:本文是“海洋素养,作为整个联合国海洋十年变化的机制”的一部分,由艾玛·麦金莱(Cardiff University),本尼迪克特·麦卡特(Cardiff University),本尼迪克特·麦卡特(Benedict McCateer)(贝尔法斯特皇后大学),贝里特·夏洛特·凯(Berit Charlotte),哥伦哈根大学(University of Copenhagen)和Brice Trouillet(Nantesuccultité) https://doi.org/10.17645/oas.i463
我们研究了有限温度和边缘引起的对电荷和电流密度的影响,该电荷位于磁通量螺纹的2D锥形空间上。场算子在圆形边界上受约束,与圆锥形顶点,袋边界条件以及条件在术语前面的相反符号的条件约束。在二维空间中存在两个clifford代数的不相等表示,并为实现这些表示形式的两个字段提供了分析。圆形边界将锥形空间分为两部分,称为内部(I-)和外部(E-)区域。径向电流密度消失。对于一般的化学势情况,在两个区域中,电荷的预期值和方位角电流密度都明确分离。它们是磁通量的周期性功能和奇数功能,在磁通量和化学势的迹象的同时变化下。与文献中先前考虑的费米凝结物的重要差异是,当观测点趋于边界时,平均电荷和当前密度在极限中是有限的。在电子区域中,所有旋转模式都是规则的,总电荷和电流密度是磁通量的连续功能。在I区中,相应的期望值是在磁通量与通量量子之比的半数值下不连续的。这些不连续性来自I区中不规则模式的贡献。2D费米子模型,在奇偶校验和时间反向转换下(在没有磁场的情况下)结合了两个旋转磁场,意识到克利福德代数的不相等表示。讨论了这些模型中的总电荷和当前密度,以针对单独字段的边界条件的不同组合进行讨论。在2D Dirac模型描述的石墨锥中讨论了电子子系统的应用。
气候模型旨在尽可能紧密地表示气候组件的统计特性,包括极端的事件,这些事件可能较少可用。这是由于人为强迫而导致的动态变化的基本要求。为了评估模型如何匹配观测值,我们需要能够选择,处理和评估气候组件的相关动力学特征的算法。必须对大型数据集有效地重申这一点,例如耦合模型对比项目6(CMIP6)发行的数据集。在这项工作中,我们使用潜在的Dirichlet分配(LDA),这是一种最初设计用于自然语言处理的统计软聚类方法,从海平面压力数据中提取天气模式,并评估CMIP6气候模型的动力学与ERA的动力学的近距离,无论是在总体情况下以及在极端温度事件的情况下,均与ERA 5 rean分析。
摘要。随着全球变暖的进展,南极的降雪预计会增加,这可能会抵消甚至暂时过度补偿冰淇淋质量损失,这是由于冰出排放和融化而导致的。对于海平面投影,了解决定南极的降雪变化的过程至关重要。在这里,我们基于Clausius – Clapeyron关系,重新审视南极温度变化与降水变化,识别和解释与理论方法的偏差之间的关系。分析全球(CMIP6,Coupled模型对比度项目第6阶段)和区域(RACMO2.3)模型预测的最新估计,我们发现,每年的温暖度比南极洲的平均降水量为5.5%,最小敏感性为2%k - 1近距离coast和最大敏感性,最高敏感性为1%k-1 k and east east east east east east east-east east east east east east east east east east east east east east east east east east east east east east的最大最大敏感性。这一较大的范围可以用主要的气候条件来解释,局部温度决定了克劳西乌斯 - 百叶窗的敏感性,在某些地区因沿海风状态而被抵消。我们比较了得出灵敏度因子的不同方法,在某些情况下,这可能导致同一模型的灵敏度变化高达7个百分点。重要的是,发现局部敏感性因素在很大程度上取决于变暖水平,这表明某些基于其沉淀估算的冰片模型基于从这些敏感性因素得出的参数估算的基础,可能会高估降雪诱导的降雪
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 - 在此简介中,我们提出了一种逐步策略,以准确估计基于硅的多纤维双极晶体管结构中的纤维温度,从常规的调查中。首先,我们在给定的环境温度下提取几乎零动力的自加热电阻(r TH,II(t a))和热耦合因子(C IJ(t a))。现在,通过将叠加原理应用于几乎零功率的这些变量上,其中保留了热扩散方程的线性,我们估计有效的热电阻(r th,i(t a))和相应的修订后的效率温度t i(t a)。最后,Kirchhoff在T I(t a)上的trans形得出每个纤维处的真实温度(t i(t a,p d))。所提出的提取技术自动包括晶体管结构中存在的后端金属层和不同类型的沟渠的影响。该技术是针对具有不同发射极尺寸的双极晶体管的3D TCAD模拟结果验证的,然后应用于从stmicroelectronics B5T技术中从最先进的多纤维sige HBT获得的实际测量数据。可以观察到,原始测量数据在40 mW左右的叠加量低估了真正的纤维温度约10%。
图S2显示了一个简化的MIC阶段的通用模型,用于n = 1.75的FSI插入。如主文本中指定的,可以看到在石墨烯层之间有或没有intercalant的画廊的交替。多个插入阶段的共存将导致使用公式1.如果占用石墨烯层之间的每个空间,则N等于1,并且X射线衍射图上的反射00n+1应该消失。这是对PF 6-阴离子的观察到的,但是,该过程的性质仍然可以讨论,并计划对此进行详细研究。我们介绍了两种情况的MIC期限。观察到的现象的另一个原因可能是主要文本中指定的两种机制的混合物:层间空间的顺序和随机统计填充。随着温度升高,可能会预期客人物种的随机分布,因为熵因子对系统的吉布斯自由能的贡献应相应增加。此外,还必须注意以下事实:根据其初始层间间距,由温度引起的互化机制的变化可能有所不同,这将代表一个有趣且广泛的方向探索。阴离子扩散
此预印本版的版权持有人于2025年3月3日发布。 https://doi.org/10.1101/2025.02.28.640855 doi:Biorxiv Preprint
对于解决地热井中HPHT条件引起的钻井问题的可能性,需要进行热稳定的地热钻泥系统的发展。这是由于高温对HPHT条件下泥流体的降解影响而发生的。挑战在于设计一种可以承受高压,高温(HPHT)条件的合适钻孔液。本研究旨在提供既便宜又环保的新添加。在应用于HPHT钻井环境时,添加剂有可能匹配或超过现有添加剂的性能。几层石墨烯(FLRGO)是通过根据Hummer方法制备的氧化石墨烯获得的。然后,还用两种类型的纳米颗粒装饰了还原的石墨烯表面,以通过简单的溶液混合技术获取两种不同组合物的纳米复合材料。使用氮化硼(BN)纳米颗粒制备了第一个石墨烯纳米复合材料(RGB),其比率不同,以产生三组从1到3。使用氮化钛(TIN)纳米颗粒获得了第二个(RGBT),其百分比不同,以产生六组从1捐赠至6。The prepared reduced graphene oxide along with its nitrides nanocomposites were intensively investigated using several characterization techniques including scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transfer infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA).因此,0.2、0.6和1 wt。在高温和压力下(230°C,17000 psi)到(80°C,2000 psi),研究对纳米复合材料均研究了如何影响水基钻孔液的流变学和过滤特性。%用作泥样样品的添加剂,并相对于参考泥浆进行了评估。的结果强调,在温度和压力升高时,带有60%石墨烯的RGBT样品,参考样品塑料粘度,20%硝酸硼和20%氮化钛的含量增强了10%至59%,17%至17%至61%至61%至61%和20%至67%(0.2 wt%),(0.2 wt%),浓度(0.6 wt),(0.6 wt tostive)和(0.6 wt t t t t t t t。同样,产量点分别提高了44%至88%,49%至88%和50%至89%。两种纳米复合材料在HPHT条件下均显着降低了滤液损失。这些发现表明,发达的纳米增强钻孔液可以抵抗高级钻孔操作中遇到的严重条件,并在较高温度下具有更好的热稳定性。