。cc-by-nd 4.0国际许可在A未获得Peer Review的认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(本版本发布于2024年5月13日。; https://doi.org/10.1101/2024.02.02.08.579555 doi:biorxiv Preprint
DNA甲基化通过募集Arabi-Dopsis MBD5/6复合物的部分介导了转座元素和基因的沉默,其中包含甲基-CPG结合结构域(MBD)蛋白MBD5和MBD6,以及MBD6,以及J-Domain含有J-Domain含有蛋白质Silenzio(SLN)。在这里,我们表征了另外两个复杂成员:含有蛋白ACD15和ACD21的α-晶体结构域(ACD)。我们表明,它们对于基因上是必要的,桥接到复合物,并促进异染色质内MBD5/6复合物的高阶多聚化。这些复合物也是高度动态的,MBD5/6复合物的迁移率由SLN活性调节。使用DCAS9系统,我们证明将ACD束缚在异染色质外部的异位部位上可以将MBD5/6复合物的大量积累带入大型核体。这些结果表明,ACD15和ACD21是基因分解MBD5/6复合物的关键组成部分,并作用着驱动CG甲基化(MECG)位点的高阶,动态组件的形成。
腺苷(a)至inosine(i)RNA编辑有助于转录本多样性,并以动态的细胞类型(特定方式)调节基因表达。在哺乳动物脑发育过程中,特定腺苷的编辑增加,而A-to-i编辑酶的表现保持不变,这表明存在介导RNA编辑时空调节的分子机制。在此,通过使用生化和基因组方法的组合,我们发现了一种分子机制,该机制以神经和发育特异性的方式调节RNA编辑。比较开发过程中的编辑,从而确定了仅在一个生命阶段编辑的神经转录本。特定于阶段的EDIT在神经发育过程中很大程度上受差异基因表达的调节。正确表达了近三分之一的神经发育调节基因取决于秀丽隐杆线虫中的唯一的A到I编辑酶ADR-2。但是,我们还确定了整个开发过程编辑和表达的神经转录本的子集。尽管在发育过程中ADR-2的神经特异性下调,但这些位点的大多数显示出成年神经细胞中的编辑增加。生化数据表明,作用于RNA(ADAR)家族的腺苷脱氨酶的脱氨酶缺陷成员ADR-1正在与ADR-2竞争,以在开发早期与特定转录本结合。我们的数据提出了一个模型,其中在神经发育过程中,ADR-2水平克服ADR-1抑制,从而导致ADR-2结合增加和特定转录本的编辑。一起,我们的发现揭示了RNA编辑的组织和开发特异性调节,并确定了调节ADAR底物识别和编辑效率的分子机制。
• 使用专有探针库确定目标 • Fulcrum 产品引擎将 p38α (MAPK) 确定为 DUX4 表达的关键调节器 • 使用基因组学和化学基因组学工具在多个细胞中验证 p38α (MAPK) • 确定可降低 DUX4 表达的化合物 • 使用患者来源的肌管建模疾病 • 第 1 阶段:临床安全性、耐受性、剂量 (PK) • 第 2 阶段:临床概念验证 • 第 3 阶段:临床益处确认
divenne肌肉营养不良(DMD)是由肌营养不良蛋白表达受损引起的严重肌肉疾病。虽然线粒体功能障碍被认为在DMD中起着重要作用,但这种功能障碍的机制仍然有意义。在这里我们证明,在DMD和其他肌肉运动障碍中,大量的DLK1-DIO3聚集的miRNA(DD-MIRNA)在再生肌纤维和血清中的再生。为了表征这种功能障碍的生物学作用,在小鼠肌肉中同时在体内过度表达了14个DD-MIRNA。转录组分析揭示了肌肉异位过表达14个DD-MIRNA和MDX diaphragm的高度相似的变化,具有自然上调的DD-MIRNA。在通常失调的途径中,我们发现抑制线粒体代谢,尤其是氧化磷酸化(OXPHOS)。在IPS衍生的骨骼肌管中击倒DD-MIRNA导致OXPHOS活性增加。数据表明(1)DD-MIRNA是DMD肌肉中营养不良变化的重要介体,(2)线粒体代谢,尤其是通过协调的上调节的DD-MIRNA在DMD中靶向DMD。这些发现提供了有关肌肉营养不良中线粒体功能障碍的机理的洞察力。
皮肤微生物组的真菌群落由单一属Malassezia主导。除了其在宿主界面的共生生活方式外,这种共同的酵母还与人类和宠物动物的各种炎症性皮肤疾病有关。稳定的定殖通过17型抗真菌型免疫维持。然而,驱动TH17对Malassezia的反应的机制仍不清楚。在这里,我们表明C型凝集素受体Mincle,Dectin-1和Dectin-2识别Malassezia细胞壁中的保守模式,并在体外诱导树突状细胞活化,而在体外,TH17激活只需要Dectin-2,而在体内实验性皮肤化合物期间,TH17激活。相反,在这种情况下,类似Toll样受体识别是多余的。相反,通过MyD88的燃料IL-1家族细胞因子信号传导也与T细胞固有方式有关Th17激活。综上所述,我们表征了有助于保护皮肤最丰富成员的途径。这种知识有助于理解屏障免疫及其对Censals的调节,并且考虑到异常免疫反应与严重的皮肤病理相关。
许多人,包括消费者,政治家以及越来越多的科学家 - 一直对某些转基因修饰(“ GM”)作物以及含有它们的食物的环境和健康影响越来越关注。尽管许多转基因农作物都经过抗拒除草剂的设计,因此允许使用更有限和有针对性的除草剂使用,但具有GM作物的农业实践却转移到明显更高的除草剂中,部分原因是杂草的除草剂耐药性的增加。2国际癌症研究机构最近将农民广泛使用的除草剂分类为“可能”或“可能的”致癌物,而美国国家科学院已经召集了一个委员会,以评估委员会,以评估GM作物的环境和健康影响。这是美国粮食生产的关键问题,因为该国种植的大豆和玉米中有90%是基因修改的。食品药品监督管理局(“ FDA”)是负责监管美国食品安全的联邦机构。目前,它认为其有限的监管GM食品的权力主要评估其对食用这些食物的人的直接影响。即使在这种直接的健康和安全效果方面,FDA也轻轻地行使了其权威,因为GM食品通常是安全的,因此对其进行了最少的审查。
HEK 293细胞用荧光素酶构建体,其中含有鸟嘌呤适体的核糖开关(左),腺嘌呤适体(中间)或TPP Aptamers(右)。转染的细胞用适体配体以指定的剂量处理。图显示了开关对不同适体粘合剂的剂量反应。con 1是没有核糖开关盒的控制构建体。
将人工智能(AI)引入教育机构是该技术能力所塑造的全球趋势的一部分。但是,由于AI技术的破坏性,它极大地影响了教学方式。因此,必须建立明确的准则,即不仅要确保课程所要求的所有能力仍然有效地讲授,还可以使学生能够以有效的方式使用新技术。为新兴和动态技术制定此类准则是一项非常具有挑战性的任务,因为规则通常很难跟上快速发展的进步。欧盟通过引入基于风险的方法来规范组织的AI应用程序,找到了解决此问题的好方法。取决于风险水平,可能禁止申请,需要进行广泛的分析和保障措施,具有透明义务,或者不需要进一步的行动。本文适应了AI ACT法规的核心结构,以使教育部门为教师和学生提供与AI打交道的结构化框架。基于教学生活周期的各种用例,以说明AI在教学和学习过程中的多功能性。通过建立这样的框架,我们不仅促进了与AI打交道的能力发展,而且还有助于创建AI在教育中的道德和负责任。
抽象在临床上严重的先天性心脏瓣膜缺陷是由于不当生长和对传单中的心内膜垫子的重塑而产生的。遗传突变已经进行了广泛的研究,但解释了不到20%的病例。通过跳动心脏产生的机械力驱动瓣膜开发,但是这些力如何共同确定阀生长和重塑,仍然是全面了解的。在这里,我们将这些力对阀尺寸和形状的影响解散,并研究YAP途径在确定大小和形状中的作用。低振荡性剪切应力促进瓣膜内皮细胞(VEC)的YAP核易位,而高单向剪切应力限制了细胞质中的YAP。瓣膜间质细胞(VIC)中的静水压缩应力激活的YAP,而拉伸应力停用的YAP。yap激活促进了VIC增殖并增加了瓣膜大小。虽然YAP抑制增强了VEC和受影响瓣膜形状的细胞细胞粘附的表达。最后,在雏鸡胚胎心脏中进行左心房连接,以操纵体内剪切和静水压力。左心室中的受限流动引起的球状和不塑性的左室(AV)阀具有抑制YAP表达。相比之下,持续YAP表达的右AV阀正常增长和细长。这项研究建立了一个简单而优雅的机械生物学系统,通过该系统的转导局部应力调节瓣膜的生长和重塑。该系统将传单带入室发育的适当尺寸和形状,而无需使用遗传规定的时序机制。