作者的完整列表:Chizuru Sawabe;东京大学,高级材料科学系,Shohei Frontier Sciences Kumagai研究生院;东京大学,高级材料科学系Mitani,Masato;东京大学,国内科学研究生院伊西伊(Hiroyuki); Masakazu的Tsukuba Yamagishi大学;美国国家技术学院,福拉玛学院萨加亚马,哈吉姆;材料结构研究所科学,高能加速器研究组织Kumai,Reiji; Hiroyasu材料结构科学研究所SATO研究所高能加速器研究组织(KEK);里格库公司(Rigaku Corporation),Takeya,Jun;东京大学,高级材料科学系,俄克冈俄克冈大学;东京大学,高级材料科学系,边境科学学院
摘要 相干激子的长距离快速传输对于高速激子电路和量子计算应用的开发具有重要意义。然而,由于材料中原生状态下的激子传输存在较大的非均匀展宽和失相效应,因此大多数相干激子仅在某些低维半导体与腔耦合时才能观察到。在这里,通过将相干激子限制在二维量子极限,我们首次在原子级厚度的二维 (2D) 有机半导体中观察到分子聚集引起的相干态间激子的“超传输”,测得的高有效激子扩散系数在室温下约为 346.9 cm 2 /s。这个值比其他有机分子聚集体和低维无机材料的值高出一个到几个数量级。单层并五苯样品是一种非常干净的二维量子系统(厚度约 1.2 纳米),具有高结晶性(J 型聚集)和最小的界面态,在未与任何光学腔耦合的情况下,表现出来自 Frenkel 激子的超辐射发射,这通过温度相关的光致发光 (PL) 发射、高度增强的辐射衰减率、显著缩小的 PL 峰宽和强方向性平面内发射得到了实验证实。观察到单层并五苯样品中的相干性在 ~135 个分子上非局域化,这明显大于在其他有机薄膜中观察到的值(几个分子)。此外,单层并五苯样品中激子的超传输表现出高度的各向异性行为。我们的研究结果为未来高速激子电路、快速 OLED 和其他光电器件的开发铺平了道路。
在开发新的设备和功能时,在不同结构和键合的材料之间形成了良好的控制界面。特别重要的是二维材料和三维半导体或金属之间的外延或低缺陷密度接口,其中界面结构在场效果中影响电导率以及光电设备的电导率,纺丝和典型的超元诱导的纤维传递。外延,因此已经证明了范德华键入底物上的几种金属的界面结构。在这种底物上的半导体外延很难控制,例如在石墨烯上Si和GE的化学蒸气沉积过程中。在这里,我们展示了一种催化介导的het-伴随的方法,以实现三维半导体的外延生长,例如van der waals键入的材料,例如石墨烯和六边形硼硝基。外在通过固体金属纳米晶体从底物“转移”到半导体纳米晶体,很容易在底物上排列并催化半导体的对准核的形成。原位透射电子显微镜使我们能够阐明此过程的反应途径,并表明固体金属纳米晶体可以在温度明显低的温度下催化半导体的生长,而不是直接化学蒸气沉积或由液体催化剂液滴介导的沉积。我们将GE和SI增长作为模型系统讨论,以探讨这种异互隔开的细节及其对更广泛材料的适用性。
摘要 相干激子的长距离快速传输对于高速激子电路和量子计算应用的开发具有重要意义。然而,由于材料中原生状态下的激子传输存在较大的非均匀展宽和失相效应,因此大多数相干激子仅在某些低维半导体与腔耦合时才能观察到。在这里,通过将相干激子限制在二维量子极限,我们首次在原子级厚度的二维 (2D) 有机半导体中观察到分子聚集引起的相干态间激子的“超传输”,测得的高有效激子扩散系数在室温下约为 346.9 cm 2 /s。这个值比其他有机分子聚集体和低维无机材料的值高出一个到几个数量级。单层并五苯样品是一种非常干净的二维量子系统(厚度约 1.2 纳米),具有高结晶性(J 型聚集)和最小的界面态,在未与任何光学腔耦合的情况下,表现出来自 Frenkel 激子的超辐射发射,这通过温度相关的光致发光 (PL) 发射、高度增强的辐射衰减率、显著缩小的 PL 峰宽和强方向性平面内发射得到了实验证实。观察到单层并五苯样品中的相干性在 ~135 个分子上非局域化,这明显大于在其他有机薄膜中观察到的值(几个分子)。此外,单层并五苯样品中激子的超传输表现出高度的各向异性行为。我们的研究结果为未来高速激子电路、快速 OLED 和其他光电器件的开发铺平了道路。