合成微生物群落(Syncom)生物传感器是一种有前途的技术,用于检测和响应环境线索和靶分子。Syncom生物传感器使用工程的微生物来创建一个更复杂和多样化的传感系统,从而使它们能够以增强的灵敏度和准确性对刺激做出反应。在这里,我们给出了Syncom生物传感器的定义,超越了他们的建筑工作,并讨论了当前的生物传感技术。我们还强调了开发和优化Syncom生物传感器以及在农业和食品经营中的潜在应用,生物治疗发展,家庭感应,城市和环境监测以及One Health Foundation的挑战和未来。我们认为,Syncom生物传感器可以实时和遥控的方式使用,以感知不断动态的环境的混乱。
脑电图(EEG)是一种广泛认识的非侵入性方法,用于囊化脑生理活性。在大多数医院环境中,它的成本效益,可移植性,易移,管理便利性和广泛可用性而脱颖而出。与其他关注解剖结构(例如MRI,CT和fMRI)的神经影像模式不同,EEG擅长提供超高的时间分辨率,这是对脑功能的深入了解的重要资产[1]。脑电图数据的经验解释主要依赖于不同生物学状态(例如,觉醒与睡眠[2])和阵发性和形态学特征[3]的鉴定(例如,觉醒与睡眠[2])以及常见的放电[4]。对外部刺激和激活程序的反应性,例如间歇性的光刺激或过度换气,在EEG分析中也起着显着的作用[5,6]。尽管这些实际方法在许多情况下很有价值,但它们通常没有捕获大脑网络各种解剖成分之间的复杂,动态和非线性相互作用。这些相互作用经常隐藏在脑电图记录中,超过了训练有素的医生的观察能力。这种监督得到了各种神经疾病的大量证据的支持,包括癫痫,神经退行性痴呆症,神经精神病学和运动障碍以及正常的认知范式[7]。此外,脑电图数据本质上是非平稳的,并且易受噪声来源的敏感,尤其是频率干扰。因此,从原始脑电图数据中有效删除噪声是要提取有意义的信息,以准确反映大脑活动和状态[8]。近年来,基于机器学习的方法吸引了相当大的关注,因为它们在嘈杂的脑电图记录中针对各种应用程序揭示了基本模式的特殊能力。本期特刊是传播EEG信号预处理,建模,分析及其应用中原始高质量研究的平台,特别关注机器学习和深度学习技术的利用。所涵盖的申请范围包括以下内容:•医疗保健申请,包括癫痫(贡献1-3)和麻醉(贡献4); •与情感有关的研究(贡献5-7); •运动图像研究(贡献8-10); •研究外部刺激(贡献11-13); •有关心理工作量的研究(贡献14-15); •满意度的研究(贡献16)。
大多数人都熟悉帕夫洛维亚的调节,其中奖励的预期行为遵循了预测的刺激。这种机制的背后是纹状体中释放的多巴胺,纹状体是皮层基底神经节的最大结构,它连接运动运动和动机。然而,尚不清楚将哪种多巴胺信号传输到纹状体以引起灵长类动物的行为。
使用连续波的光学检测到的磁共振光谱在纤维顶传感器构型中,团队估计NV浓度和T₂*(DeCherence时间)分别为0.05 ppm和0.05μs。传感器的渐变计设置,两个传感器位于母线的两侧,在没有磁性屏蔽的情况下显示出小于20 nt/hz 0.5的噪声底。此外,磁场噪声的艾伦偏差保持在0.3μt以下,这使得在10 ms至100 s的累积时间内检测到低至10 mA的母线电流。
量子现象,例如叠加和纠缠,可以用来更精确地测量两个遥远空间中不同时钟的时间。同样,如果您有两个物理量,一个在首尔,一个在釜山中,则可以在首尔和釜山共享纠缠状态,然后同时测量两个物理量,而不是分别测量首尔和釜山的物理量。
基于转录的全细胞生物传感器(WCB)是由分析物1响应启动子设计的细胞,驱动记者基因的转录。WCB可以感知并报告与人类健康相关的生物活性分子(分析)。设计对分析物敏感的3启动子需要繁琐的试验方法,通常会导致生物传感器4的性能差。在这里,我们将合成生物学与控制工程集成到5个设计,计算模型,并在6个哺乳动物细胞中实现了高性能生物传感器。与传统方法不同,我们的方法不依赖于优化独立的7个视图组件,例如启动子和转录因子。相反,它使用生物分子8电路来增强生物传感器的性能,尽管固有的组件缺陷。我们通过采用CRISPR-CAS系统来仔细地实现了八个不同的生物传感器,然后进行了数量比较的性能,并确定了一种配置,我们将其命名为11个Casense,从而克服了当前生物传感器的局限性。我们的方法是可以推广的12,并且可以适应任何感兴趣的分析物,其中有一个对分析物敏感的13启动子,使其成为多种应用程序的多功能工具。作为概念证明,我们14培养了细胞内铜的高性能生物传感器,这是因为铜15在人类健康和疾病中发挥作用,并且缺乏能够测量细胞内16铜在活细胞中的技术。19我们工作的重要性在于它在体外和体内对17种监测生物活性分子和化学物质的监测的潜力,在18个地区,例如毒理学,药物发现,疾病诊断和治疗中至关重要。
首次由FrankWürthner领导的团队现在创建了一个具有缺陷的模型系统,该系统使Halides氟化物,氯化物和溴化物可以通过,但不是碘化物。这是在稳定的双层层中实现的,该双层由两个包围空腔的纳米仪组成。穿透的卤化离子在此腔中结合,以便可以测量进入所需的时间。
CP和电荷存储模型。a,通过数值求解Poisson – Nernst – Planck和Navier -Stokes方程获得的纳米纤维内部离子的平均浓度和–200 mV。在模拟中使用的大量离子浓度为10 mM,离子特性为K +和Cl - 。孔的表面电荷为-10 mc M –2。b,CP因子是数值模拟预测的离子浓度的函数。c,d,传统电容器的示意图,其中电荷在空间中分开,并且在换压时可以放电。e,f,一个离子负电容器的示意图,其中电荷被共定位,但仍可以随电压变化而放电。Q与V曲线的负斜率是负电容的特征。信用:自然纳米技术(2025)。doi:10.1038/s41565-024-01829-5
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
1 de toulouse大学,Insa-CNRS-UPS,LPCNO,135 AV。Rangueil, 31077 Toulouse, France 2 Centre d'Elaboration des Matériaux et d'Etudes Structurales (CEMES), UPR8011 CNRS, Université Toulouse 3, 31055 Toulouse, France E-mail: lassagne@insa-toulouse.fr Graphene-based Hall effect magnetic field sensors hold great promise for the development of ultrasensitive magnetometers with very low power 消耗。经常使用所谓的两通道模型对其性能进行分析,其中简单地添加了电子和孔电导率。不幸的是,该模型无法捕获所有传感器的特性,尤其是磁场灵敏度的偏置电流依赖性。在这里,我们提出了一个高级模型,该模型对基于石墨烯的霍尔传感器如何运行并证明其定量评估其性能的能力有深入的了解。首先,我们根据石墨烯的不同品质报告了传感器的制造,最好的设备可实现高达5000ω/𝑇的磁场敏感性,表现优于最佳的硅和基于窄间隙的半导体传感器。然后,我们使用所提出的数值模型详细检查了它们的性能,该模型将Boltzmann的形式主义与电子和孔的不同Fermi水平结合在一起,以及一种引入底物诱导的电子孔 - 水坑的新方法。重要的是,磁场灵敏度对偏置电流,无序,底物和霍尔杆几何形状的依赖性首次定量再现。此外,该模型强调,由于电流堆积物的出现和霍尔酒吧边缘附近的损耗区域的出现,具有电荷载体扩散长度宽度的设备受到偏置电流的影响很大,比常规HALL效应预测大得多。这些区域的形成诱导了横向扩散荷载载体通量,当Hall电场取消在Ambipolarememime中,能够抵消由Lorentz力诱导的载体。最后,我们讨论了Fermi Velocity Engineering如何增强传感器性能,为将来的超敏感石墨烯效果传感器铺平了道路。关键字:石墨烯,石墨烯霍尔传感器,磁场传感器,霍尔效应,玻尔兹曼形式主义,费米速度重新归一化,电子孔布丁