摘要:入侵检测系统(IDS)对于识别网络攻击并为每种风险采取适当的措施至关重要。机器学习(ML)技术的效率在存在无关的特征和阶级失衡的情况下被妥协。在这项研究中,提出了有效的数据预处理策略,以增强模型的普遍性。使用K-均值Smote解决类别的差异。之后,我们提供了一种混合特征选择方法,该方法结合了过滤器和包装器。此外,通过改变最佳特征子集来分析超参数调整的光梯度增强机(LGBM)。实验使用了数据集 - UNSW-NB15和CICIDS-2017,其精度分别为90.71%和99.98%。由于模型的透明度和概括性很大程度上取决于理解预测的每个组成部分,因此我们采用了可解释的人工智能(XAI)方法,Shapley添加说明(SHAP)来提高对预测结果的理解。
摘要 — 人工智能 (AI),尤其是机器学习 (ML),在考古学中的应用正在蓬勃发展,开辟了文物分类、遗址位置预测和遗迹分析等新的可能性。这方面的主要挑战之一是缺乏精通机器学习的合格考古学家。在本研究中,我们介绍了 IArch,这是一种无需特定编程技能即可让考古学家进行可解释人工智能 (XAI) 数据分析的工具。它特别允许执行数据分析以验证现有的数据支持假设或生成新假设。该工具涵盖了应用 ML 的整个工作流程,从数据处理到解释最终结果。该工具允许使用监督和无监督 ML 算法,以及 SHapley Additive exPlanations (SHAP) 技术为考古学家提供对预测的整体和个体解释。我们通过蒙古草原上的匈奴墓地(公元前 100 年 / 公元 100 年)的数据证明了它的应用。
全局 BETA 模型 [37*] 树提取 - Bastani、Kim 和 Bastani [38*] 提炼和比较模型 - Tan、Caruana、Hooker 和 Lou [39] 符号元模型 - Alaa 和 van der Schaar [40] 局部 LIME - Ribeiro 等人。 [26] 锚点——Ribeiro、Singh 和 Guestrin [41] 归因全局 PDP——Friedman [42] 特征交互——Friedman 和 Popescu [43] ALE——Apley 和 Zhu [44*] 特征重要性——Fisher、Rudin 和 Dominici Kapelner、Bleich 和 Pitkin [47] QII——Datta、Sen 和 Zick [48] SHAP——Lundberg 和 Lee [49] LOCO——Lei 等人。 [46] INVASE - Yoon, Jordon 和 van der Schaar [50] 全球影响力实例示例 - Cook [51] MMD-critic - Kim, Khanna 和 Koyejo [52] 本地影响力实例 - Cook [51] 无条件反事实解释 - Wachter, Mittelstadt 和 Russell
摘要 在过去的二十年里,人工智能 (AI) 方法已经应用于智能电网的各种应用,例如需求响应、预测性维护和负荷预测。然而,由于缺乏可解释性和透明度,人工智能仍然被认为是“黑匣子”,尤其是对于涉及许多参数的太阳能光伏 (PV) 预测。可解释人工智能 (XAI) 已成为智能电网领域的一个新兴研究领域,因为它解决了这一差距并有助于理解 AI 系统做出预测决策的原因。本文介绍了使用 XAI 工具(例如 LIME、SHAP 和 ELI5)进行太阳能光伏能源预测的几个用例,这些用例有助于将 XAI 工具用于智能电网应用。了解基于 AI 的预测模型的内部工作原理可以深入了解应用领域。这种见解可以改进太阳能光伏预测模型并指出相关参数。
方法:有64名MCI和中度至重度白细胞病的参与者在2年内接受了基线MRI检查和年度神经心理学测试。痴呆症的诊断是基于既定标准。我们评估了基线时人口统计学,神经心理学和几种MRI特征,作为临床转变的预测因素。MRI功能包括视觉评估的MRI特征,例如裂缝,微粒和血管周围空间的数量以及定量MRI特征,例如皮质GM,海马,T 2高强度和脑脑WM的di索指标。此外,我们研究了高级定量特征,例如皮质GM和WM的分形维度(FD),该特征代表了从3D-T 1加权图像得出的组织结构复杂性的指数。为了评估对痴呆症过渡的预测,我们使用Shapley添加说明(SHAP)值采用了基于XGBoost的机器学习系统,以为机器学习模型提供解释性。
数字转换的增强对于业务开发而言至关重要。本研究采用机器学习来建立一个用于数字转型的预测模型,研究影响数字转换的关键因素,并提出相应的改进策略。最初,比较了四种常用的机器学习算法,表明极端的树格分类(ETC)算法表现出最准确的预测。随后,通过相关分析和反复消除,选择了影响数字转换的关键特征,从而导致相应的特征子集。Shapley添加说明(SHAP)值对预测模型进行可解释的分析,从而阐明了每个关键特征对数字变换的影响并获得关键特征值。最后,通过实际考虑,我们提出了一种定量调整策略,以增强企业中数字化转型的程度,该策略为数字开发提供了指导。
本文研究了Azure机器学习中可解释的AI(XAI)模型的实施,以生成业务见解。本文解决了业务环境中AI模型透明度的关键挑战,尤其是专注于中小型企业。本文调查了包括Shap和Lime在内的可解释的机器学习技术如何在商业环境中增强利益相关者的信任和模型采用。本文表明,实施结构化的XAI框架可显着提高各个部门的决策过程和运营效率。通过分析医疗保健,制造业和金融服务中的实施,本文确定将本地和全球解释方法与适当的可视化策略相结合,从而提高了模型的可解释性和利益相关者的接受度。本文建议,通过正确实施的可解释的AI框架,组织可以在AI采用和利用方面实现实质性改进,尤其是当技术解释有效地转化为与业务相关的见解时。
背景:血管内治疗(EVT)被建议作为治疗颅内动脉瘤的优越方式。然而,患有EVT的动脉瘤性蛛网膜下腔出血(ASAH)患者的功能结果较差仍然存在。因此,迫切需要研究风险因素并在此类患者的亚型中开发关键的决策模型。方法:我们从正在进行的注册表队列研究Prosah-MPC中提取了目标变量,该研究是在中国多个中心进行的。我们将这些患者随机分配给培训和验证队列,比为7:3。单变量和多元逻辑回归以找到潜在因素,然后开发了具有优化变量的九个机器学习模型和堆栈集合模型。通过多个指标评估了这些模型的性能,包括接收器操作特征曲线(AUC-ROC)下的区域。我们进一步使用Shapley添加说明(SHAP)方法,基于最佳模型的特征可视化分布。结果:总共招募了226名经历EVT的较差ASAH的合格患者,而89(39.4%)的12个月结果较差。年龄(调整或[AOR],1.08; 95%CI:1.03–1.13; P = 0.002),蛛网膜下腔出血体积(AOR,1.02; 95%CI:1.00-1.05; P = 0.033; P = 0.033; P = 0.033),神经外神经社会级联盟,Wornurosurgical Societies等级(wfns)(W ffns)(w ffns)(w ffns)(w ffns)(2.03)(aor c)(2.03); 1.05–3.93; p = 0.035)和狩猎级别(AOR,2.36; 95%CI:1.13–4.93; p = 0.022)被确定为不良结果的独立风险因素。NCT05738083。然后,开发的预测模型表明,LightGBM算法在验证队列中的AUC-ROC值为0.842,而Shap结果表明年龄是影响功能结果的最重要的风险因素。结论:LightGBM模型在促进患有不良后果风险的贫困级ASAH患者的风险分层方面具有巨大的潜力,从而增强了临床决策过程。试用注册:Prosah-MPC。2022年11月16日注册 - 回顾性注册,https:// clinical trials.gov/study/nct05738083。关键词:颅内动脉瘤,蛛网膜下腔出血,血管内手术,机器学习,预后
抽象目标:包括孟加拉国和印度在内的许多南亚国家的农业部门在经济中起着关键作用,其中很大一部分人口依赖于生计。然而,农民经常遇到诸如不可预测的天气状况,土壤可变性以及诸如洪水和侵蚀的自然灾害之类的挑战,导致农作物的损失和经济损失。尽管政府补贴,许多农民仍在努力维持生计,导致对农业的利益下降。我们的重点是预测基于土壤和天气特征的组合,包括大米,黄麻,玉米等各种作物的分类。土壤特征,包括氮,磷,钾和pH水平,以及天气变量(例如温度,湿度和降雨),用于预测模型的输入。方法:在本研究中,我们通过利用先进的机器学习技术并将遗传算法整合到预测模型中来解决农作物预测的关键问题。我们提出的方法采用了混合方法,其中利用遗传算法来优化模型的超参数,从而增强其性能和鲁棒性。具体来说,我们采用了随机的森林分类器,一种强大的合奏学习技术,对与22种不同类型的农作物相关的类标签进行分类。发现:对模型的精度进行了广泛的评估,证明了99.3%的明显准确率。这种整合的目的是提高农作物预测模型的可解释性和准确性。此外,我们还利用了局部可解释的模型 - 不合Snostic解释(Lime)和Shapley添加说明(SHAP)可解释的AI(XAI)方法来解释和验证模型的预测。新颖性:该研究提出了一种独特的作物预测方法,该方法将机器学习(ML)与遗传算法(GAS)结合在一起。由于局部近似酸橙的性质,可能会产生矛盾的答案。另一方面,对于复杂的模型和广泛的数据集,塑造的计算成本可能很高。通过改进特征选择和模型参数,将气体与ML模型的集成克服了这些缺点,并产生了更可靠和准确的预测。我们系统所实现的高精度强调了其减轻农作物损失和提高农业生产力的潜力,从而为任何国家的农业部门的可持续性和繁荣做出了贡献。
摘要 - 机器学习的许多形式(ML)和人工智能(AI)技术在通信网络中采用以执行所有优化,安全管理和决策任务。而不是使用常规的黑框模型,而是使用可解释的ML模型来提供透明度和问责制。此外,由于网络的分布性和安全隐私问题,联合学习(FL)类型ML模型比典型的集中学习(CL)模型变得越来越流行。因此,研究如何使用可解释的AI(XAI)在不同的ML模型中找到解释能力是非常及时的。本文在网络中使用XAI在CL和FL的异常检测中进行了全面分析。我们将深层神经网络用作黑框模型,其中两个数据集,即UNSW-NB15和NSL-KDD,以及Shapley添加说明(SHAP)作为XAI模型。我们证明,FL的解释与客户端异常百分比不同。索引术语-6G,安全性,隐私,可解释的AI,中央学习,联合学习。