世界正在迎来知识密集型和高度数字化的经济。这个世界也许看起来不像是在打仗,但实际上我们正在进入第四次工业革命——一个超速发展和重大技术变革的时代。
摘要本文介绍了Hanooman,这是一种生成的AI和大型语言模型聊天机器人,其灵感来自Hindu Geity Lord Hanuman。Hanooman旨在体现力量,敏捷性和奉献精神的素质,利用尖端的语言处理能力,为用户提供信息丰富且引人入胜的对话。我们探索了哈诺曼的概念框架,架构和培训程序,展示了其在各个领域的潜在应用。我们的评估结果表明,在响应准确性和上下文理解方面,Hanooman优于现有的聊天机器人,使其成为自然语言处理和人类计算机互动的有前途的工具。大语言模型(LLM)和生成AI是人工智能的重大进步,彻底改变了我们与技术的互动,生成内容和理解人类语言的方式。llms,在大量数据集中受过培训,在语言翻译,文本摘要,问题答案和创意写作等任务中表现出色。生成的AI(AI的一个子集)会产生自主输出,通常表现出惊人的创造力和连贯性。印度亿万富翁穆克什·安巴尼(Mukesh Ambani)与IIT孟买和其他八个印度技术学院合作,加入了AI竞赛,以推出“ Hanooman”,这是一集,该集合以22种印度语言培训了大型语言模型。关键字:哈诺曼,大语言模型,人工智能,生成AI1。简介
深度卷积神经网络(DCNN)的预训练在视觉情绪分析(VSA)领域起着至关重要的作用。大多数提出的方法都采用在大型物体分类数据集(即 ImageNet)上预训练的现成的主干网络。虽然与随机初始化模型状态相比,它在很大程度上提高了性能,但我们认为,仅在 ImageNet 上进行预训练的 DCNN 可能过于注重识别物体,而未能提供情绪方面的高级概念。为了解决这个长期被忽视的问题,我们提出了一种基于人类视觉情绪感知(VSP)机制的面向情绪的预训练方法。具体而言,我们将 VSP 的过程分为三个步骤,即刺激接受、整体组织和高级感知。通过模仿每个 VSP 步骤,我们通过设计的情绪感知任务分别对三个模型进行预训练,以挖掘情绪区分的表示。此外,结合我们精心设计的多模型融合策略,从每个感知步骤中学习到的先验知识可以有效地转移到单个目标模型中,从而获得显着的性能提升。最后,我们通过大量实验验证了我们提出的方法的优越性,涵盖了从单标签学习(SLL)、多标签学习(MLL)到标签分布学习(LDL)的主流 VSA 任务。实验结果表明,我们提出的方法在这些下游任务中取得了一致的改进。我们的代码发布在 https://github.com/tinglyfeng/sentiment_pretraining 。
用户控制图片(亮度、对比度、清晰度、背景级别、色调、颜色、降噪、伽玛选择、低蓝光、色温、颜色控制、过扫描、图片重置)、屏幕(缩放模式、自定义缩放、屏幕重置)、音频(平衡、高音、低音、音量、音频输出(线路输出)、最大。音量,最小。音量、静音、音频重置、音频输出同步、扬声器设置)、配置 1(Android 启动器、开启状态、触摸锁、触摸模式、鼠标模式、面板保存、RS232 路由、启动源、WOL、conf.1 重置、恢复出厂设置)、配置 2(OSD 超时、OSD H 位置、OSD V 位置、系统旋转、信息 OSD、徽标和动画、徽标设置、动画设置、显示器 ID、显示器信息、HDMI 版本、conf.2 重置)、高级选项(信息亭模式、侧边栏、无信号图像、电动支架、红外控制、电源 LED 灯、风扇、关闭定时器、时间表、单线 HDMI、单线 HDMI 关闭、故障转移、语言、OSD 透明度、省电、高级选项重置)
●修改通识教育模型,以支持学生围绕他们的目标,兴趣,先前的学习经验和学习计划来塑造他们的教育,同时参与广泛的自由教育。
摘要:人工智能在日常生活中的应用变得无处不在且不可避免。在那个广阔的领域,一个特殊的位置属于用于多参数优化的仿生/生物启发的算法,该算法在许多区域中找到了它们的使用。新颖的方法和进步正在以加速速度发表。因此,尽管事实上有很多调查和评论,但它们很快就变得过时了。因此,与当前的发展保持同步非常重要。在这篇综述中,我们首先考虑了生物启发的多参数优化方法的可能分类,因为专门针对该领域的论文相对较少,而且通常是矛盾的。我们通过详细描述一些更突出的方法以及最近发表的方法来进行。最后,我们考虑在两个相关的宽域中使用仿生算法的使用,即微电子(包括电路设计优化)和纳米光子学(包括诸如光子晶体,纳米质体的构造和水流的结构的逆设计(包括逆设计)。我们试图保持这项广泛的调查独立,以便不仅可以使用相关领域的学者,还可以使用对这个有吸引力领域的最新发展感兴趣的所有人。
视觉语言(VL)模型最近取得了未经证实的成功,其中连接模块是弥合模式差距的关键。尽管如此,在大多数存在方法中,富裕的视觉线索尚未充分利用。在视觉侧,大多数现有方法仅使用视觉塔的最后一个功能,而无需使用低级功能。在语言方面,大多数现有的方法仅引入浅视力互动。在本文中,我们提出了一个视觉启发的视觉语言连接模块,称为VIVL,该模块有效利用了VL模型的视觉提示。为了利用视觉塔中的较低级别信息,引入了特征金字塔提取器(FPE),以结合不同中间层的特征,该特征将视觉提示与可忽略不计的参数和计算在头顶上。为了实现VL相互作用,我们提出了深视觉条件的提示(DVCP),可以有效地进行视觉和语言特征的深层互动。我们的VIVL超过了以前的最新方法,当时是18.1苹果酒在从头开始训练可可字幕任务,这极大地提高了数据效率。当用作插件模块时,VIVL始终提高各种骨干和VL框架的性能,在多个基准测试中提供新的最新结果,例如Nocaps和VQAV2。
摘要。在自然环境中具有综合性运作的情境意识到的人工药物面临着几个挑战:空间意识,对象效果检测,动态变化和不可预测性。一个关键的挑战是代理商识别和监视与其目标有关的环境要素的能力。我们的研究介绍了一种用于反应性机器人技术的神经符号模块化体系结构。我们的系统结合了在环境和图像处理技术(如光流)上执行对象识别的神经组件,以及符号表示和推理。通过将图像示意性知识整合在本体论结构中,推理系统基于体现认知范式的基础。该本体可用于创建有关感知系统的查询,决定符合的问题,并推断从感知数据中得出的实体功能。推理和图像处理的组合允许代理对正常操作的看法,并发现针对特定相互作用中涉及的对象的一部分的新概念。发现的概念允许机器人自主获取培训数据并只是其符号的感知来识别零件,并通过将搜索重点放在这些相关对象的零件上,从而为更复杂的任务进行计划。我们在模拟世界中演示了我们的方法,在模拟世界中,代理商学会了识别涉及支持关系的对象的一部分。虽然代理商最初没有概念,但通过观察从钩子上悬挂的支持对象的示例,但它学会了认识到建立支持所涉及的部分并能够计划支持关系的建立/破坏。这可以通过系统的方式通过观察来扩展其知识的能力,并说明了将深层推理与动态设置中的反应性机器人技术相结合的潜力。
近年来数据的指数增长导致了从多个来源产生的庞大,异质的数据集。大数据应用程序越来越依赖这些数据集来提取知识,以进行预测分析和决策。但是,数据的质量和语义完整性仍然是关键的挑战。在本文中,我们提出了一个受脑启发的分布式认知框架,该框架将深度学习与Hopfield Network集成,以识别和链接多个数据集的语义相关属性。我们的方法对人脑的双半球功能进行了建模,右半球在其中处理并吸收了新信息,而左半球则检索学习的表示形式以建立有意义的关联。认知体系结构在MapReduce框架上运行,并链接存储在Hadoop分布式文件系统(HDFS)中的数据集。通过将深层田网络作为一种关联内存机制纳入,我们的框架可以增强经常同时发生属性的回忆,并根据不断发展的数据使用模式动态调整关系。实验结果表明,随着时间的流逝,霍普菲尔德记忆中具有强大关联烙印的属性会得到加强,而相关性降低的属性逐渐削弱 - 这种现象类似于人类记忆的回忆和遗忘。这种自优化的机制可确保链接的数据集具有上下文有意义,从而提高数据歧义和整体集成精度。我们的发现表明,将深层网络与分布式认知处理范式相结合,为在大规模环境中管理复杂的数据关系提供了可扩展且具有生物学启发的方法。
