1莱布尼兹光子技术研究所(IPHT),莱布尼兹感染研究中心(LPI),07745德国耶拿,德国2号耶拿2感染遗传学研究校园,07743德国耶拿,德国耶拿,3 Hygiene, 1220 Vienna, Austria 5 Institute of Microbiology and Epizootics, Centre for Infection, Medicine School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany 6 Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany 7 Institute of Microbiology, University of Veterinary Medicine, 1210奥地利维也纳; igor.loncaric@vetmeduni.ac.at 8 Poultry Clinics and Laboratory Pöppel, 33129 Delbrück, Germany 9 Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), 75189 Uppsala, Sweden 10 Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), 75007 Uppsala,瑞典11细菌感染和人畜共患病研究所,弗里德里希·洛夫勒·伊斯蒂特(Friedrich-Loeffler-Institut)(联邦动物健康研究所),07743德国耶拿,德国12个物理化学研究所,弗里德里希·史基勒大学,弗里德里希·史基勒大学,德国jena,07743 jena,jena,jena,jena jena,jena jena jena * sosecence:soneceence:Steence:Steence:Steecectect CortezdeJäckel和Helmut Hotzel已退休。
摘要:由于牛奶乳清是一种丰富的乳制品副产品,并且对环境有重大威胁,因此其利用引起了极大的兴趣。这项研究比较了乳糖和乳酸(通过发酵)的乳糖和乳酸的价值(乳清的主要碳来源)。食品级细菌在发酵过程中释放的抗菌作用可以帮助提高食物的微生物安全性。丙酸 - 一种强的抗菌剂 - 主要是通过石化途径获得的,但对其在生物技术途径中的合成越来越兴趣。五株丙酸细菌(酸性核酸杆菌,酸性杆菌,环己丙己省丙糖酸,弗洛德尼丙肽杆菌,酸性核酸杆菌,Jensenii酸性杆菌,Jensenii和使用酸性的酸性酸杆菌的能力),并产生了酸性的酸性,并产生了有机酸酯的能力。碳源。在用食源性病原体研究期间,研究了选定的发酵液的抗菌效率:大肠杆菌,克雷伯氏菌肺炎,铜绿假单胞菌,铜绿假单胞菌,枯草芽孢杆菌,枯草菌和葡萄球菌aureus。结果证实,酸和生物量的产生对添加的碳源影响很大。测试的发酵液具有针对铜绿假单胞菌,枯草芽孢杆菌和金黄色葡萄球菌的强大抗小体活性。此外,抑制金黄色葡萄球菌和肺炎肺炎的抑制取决于产生的细菌素的活性。本文还讨论了通过酸性提高发酵物抗菌活性的可能性。
摘要:类胡萝卜素生产的研究和开发历史悠久,人们对这组色素的兴趣至今未减。现有的六种类胡萝卜素被认为具有工业重要性:虾青素、β-胡萝卜素、叶黄素、玉米黄质、角黄素和番茄红素。这些类胡萝卜素具有广泛的应用范围,由于其生物活性和着色特性,被用作食品和饮料、饲料、营养保健品、药品和化妆品中的添加剂。目前,全球色素市场以化学合成的类胡萝卜素为主。来自植物和微生物等天然来源的类胡萝卜素不那么受欢迎或普及。目前,天然类胡萝卜素市场主要由微藻雨生红球藻、盐生杜氏藻、布朗葡萄藻、真菌三孢布拉氏菌、红法夫酵母和细菌胡萝卜素副球菌代表。这些微生物产生虾青素、β-胡萝卜素、角黄素和番茄红素。红酵母、掷孢酵母、弹球酵母、戈登酵母和迪茨酵母属的几种酵母和细菌可能成为工业规模的类胡萝卜素来源,但现有技术仍需改进。本文综述了提高真菌和细菌类胡萝卜素生产竞争力的策略。考虑的策略包括选择产胡萝卜素菌株、使用低成本底物、通过添加微量元素、TCA中间体、NaCl、H 2 O 2 、光照来刺激类胡萝卜素的合成,以及优化pH、温度和通气等发酵条件。
摘要近年来已经看到了高临界性和高通量遗传操纵技术的发展,这些技术极大地改善了我们对遗传典型微生物的理解。然而,在建立新生物体的遗传操纵技术方面仍然存在挑战,这主要是由于外源性DNA防御机制,缺乏可选标记,缺乏有效的方法来引入外源性DNA以及无法在其新宿主中复制遗传媒介。在这篇综述中,我们描述了一些用于新型微生物的基因操纵的技术。尽管存在许多关注遗传操作的最后一步的评论,但对受体DNA的编辑进行了编辑,但我们特别关注此过程的第一步,将外源性DNA转移到了感兴趣的菌株中。提供了这些技术使用的示例,用于选择人类肠道细菌,其中已经建立了遗传性障碍性,例如双歧杆菌,细菌和罗斯伯里亚。最终,本综述旨在为有兴趣开发新型细菌菌株(尤其是人类肠道菌群的遗传操纵技术)的研究人员提供信息来源。
传染病暴发是水产养殖中的主要挑战之一。因此,对可持续水产养殖实践的益生菌的应用有越来越多的兴趣,以最大程度地减少传染病的传播。在这项研究中,将细菌从Pinctada降射中分离出来,以检查其益生菌潜力。 乳酸细菌(LAB)可能是水产养殖的益生菌候选物。 从珍珠牡蛎p的肠道含量中分离出五个实验室菌株。 Radiata(Leach,1814年),位于红海的吉达海岸。 实验室在形态,生物学和生化上进行了特征,检查了其益生菌特性,并使用16S rRNA测序鉴定。 五个选定的孤立实验室菌株是革兰氏阳性(杆和球菌),并测试了过氧化氢酶和氧化酶的阴性。 实验室菌株被鉴定为Valezensis(POR1),B。siamensis(Por2),葡萄球菌表皮#1和S。 表皮#2(POR3和POR5)和s。 hominis(POR4)。 POR1和POR2测试了γ-溶血活性的阴性,而POR3,POR4和POR5测试了α-溶血活性阳性。 所有五种菌株均对抗生素敏感,包括红霉素(E10),硝基纤维化(F100)和Novobiocin(NV5),四种菌株显示出高达2.5 pH的酸耐受性。 在分离株中,POR1、2、4、5耐受的3小时暴露于0.3%的胆汁盐。 所有实验室菌株均表现出对S临床菌株的拮抗活性。 金黄色葡萄球菌,鲍马尼杆菌,耐甲氧西林的s。 金黄色和大肠杆菌。在这项研究中,将细菌从Pinctada降射中分离出来,以检查其益生菌潜力。乳酸细菌(LAB)可能是水产养殖的益生菌候选物。从珍珠牡蛎p的肠道含量中分离出五个实验室菌株。Radiata(Leach,1814年),位于红海的吉达海岸。实验室在形态,生物学和生化上进行了特征,检查了其益生菌特性,并使用16S rRNA测序鉴定。五个选定的孤立实验室菌株是革兰氏阳性(杆和球菌),并测试了过氧化氢酶和氧化酶的阴性。实验室菌株被鉴定为Valezensis(POR1),B。siamensis(Por2),葡萄球菌表皮#1和S。表皮#2(POR3和POR5)和s。hominis(POR4)。POR1和POR2测试了γ-溶血活性的阴性,而POR3,POR4和POR5测试了α-溶血活性阳性。所有五种菌株均对抗生素敏感,包括红霉素(E10),硝基纤维化(F100)和Novobiocin(NV5),四种菌株显示出高达2.5 pH的酸耐受性。在分离株中,POR1、2、4、5耐受的3小时暴露于0.3%的胆汁盐。所有实验室菌株均表现出对S临床菌株的拮抗活性。金黄色葡萄球菌,鲍马尼杆菌,耐甲氧西林的s。金黄色和大肠杆菌。因此,可以建议从p的肠道含量分离出的五个实验室菌株。辐射可能是水产养殖应用的良好候选益生菌。
引言肠道免疫系统肠道菌群的组成和功能是肠内稳态的关键。肠道相关淋巴组织(GALT)是体内最大的淋巴组织,是免疫细胞与抗原接触的主要部位[1]。肠道由外粘液层,肠上皮细胞的中央单层和内部椎板组成[2]。粘液层和肠上皮共同构成了肠道微生物的物理障碍,而固有层的免疫细胞充当免疫屏障[3]。生理屏障粘液层充当肠道中的第一道防线,并防止细菌直接与潜在的肠上皮上皮直接相互作用[3]。该层含有糖基化的粘蛋白蛋白,形成类似凝胶的筛结构,以及上皮细胞分泌的抗菌肽,分泌免疫球蛋白和其他分泌的蛋白[3]。上皮层由肠上皮细胞,杯状细胞和Paneth细胞组成。该屏障的渗透性受到紧密连接蛋白的影响,后者将相邻的上皮细胞固定在一起[2]。
摘要:由于抗菌耐药性的增加,禁止家禽生产中的抗生素增长促进剂和其他抗菌剂会导致增加潜在替代品(如益生菌)的喂养。但是,这些饲料添加剂的作用方式尚未完全理解。他们甚至可以直接影响免疫系统。使用原发性培养的外周血单核细胞(PBMC)进行了先前建立的动物体外系统,以研究免疫调节饲料添加剂的影响。在这里,评估了两种益生菌菌株的不同制剂的免疫调节,枯草芽孢杆菌DSM 32315(BS)和B. amyloliquefaciens Cect 5940(BA)的免疫调节。以1:3(PBMCS:Bacillus)为重要BS(CD4+:P <0.05; CD4+CD25+:P <0.01)的比率为1:3(PBMCS:Bacillus)的T DIV和活化的T-助血细胞增加。此外,重要的BS增强了细胞毒性T细胞的增殖和激活(CD8+:P <0.05; CD8+CD25+:P <0.05)。BS的无细胞益生菌培养上清液增加了活化的T-辅助细胞的计数(CD4+CD25+:P <0.1)。 UV灭活的BS增加了细胞毒性T细胞的比例显着(CD8+:P <0.01)。 我们的结果表明,BS的分泌因子可能参与T-辅助细胞激活和增殖,而它可能通过表面接触刺激细胞毒性T细胞。 用不同的BS制备处理后,我们无法观察到对B细胞的任何影响。 此外,我们发现BA制剂对B细胞没有影响。BS的无细胞益生菌培养上清液增加了活化的T-辅助细胞的计数(CD4+CD25+:P <0.1)。UV灭活的BS增加了细胞毒性T细胞的比例显着(CD8+:P <0.01)。我们的结果表明,BS的分泌因子可能参与T-辅助细胞激活和增殖,而它可能通过表面接触刺激细胞毒性T细胞。用不同的BS制备处理后,我们无法观察到对B细胞的任何影响。此外,我们发现BA制剂对B细胞没有影响。用重要的BA处理后的比例为1:3(PBMCS:杆菌),T-辅助细胞的计数和活化的T-助因细胞增加(CD4+:P <0.01; CD4+CD25+:P <0.05)。BA的无细胞益生菌培养物以及紫外线灭活的BA对T细胞增殖和激活没有影响。 总体而言,我们认为这两种不同的芽孢杆菌菌株增强了T细胞的激活和增殖,这表明两种菌株在体外对鸡肉免疫细胞的免疫调节作用。 因此,我们建议服用这些益生菌可以改善鸡的细胞适应性免疫防御,从而可以预防和减少鸡肉养殖中的抗菌药物。BA的无细胞益生菌培养物以及紫外线灭活的BA对T细胞增殖和激活没有影响。总体而言,我们认为这两种不同的芽孢杆菌菌株增强了T细胞的激活和增殖,这表明两种菌株在体外对鸡肉免疫细胞的免疫调节作用。因此,我们建议服用这些益生菌可以改善鸡的细胞适应性免疫防御,从而可以预防和减少鸡肉养殖中的抗菌药物。
铬酸盐诱导的皮炎是一个重大的职业健康问题。铬酸盐(CR)抗乳糖酶鼠李糖菌株是从商业益生菌prepro和Hiflora中分离出来的。在13个耐CR的细菌分离株中,根据500 ug/ml的高铬酸盐耐药性选择了6种。选定的分离株进行生化和分子表征以及体内分析。DPC测定,以确定分离细菌的降低潜力。选定的分离株被鉴定为L. rhamnosus -L1(Pp493917),L。rhamnosus -L2(Pp493918),L。Rhamnosus-L3(PP493921)L。 Rhamnosus -L12(PP493923)。乳酸乳杆菌L1SHOSUS l1展示了对CR(VI)的最高耐药性,降低了潜在的56%。进行了体内实验,以评估分离的细菌菌株对小鼠皮肤的愈合作用,并用苏木精和曙红(H&E)染色,用于鉴定皮肤组织中严重的皮炎并评估益生菌菌株的治疗作用。使用生物信息学工具进行了鼠李乳杆菌的黄素还原酶蛋白的结构测定。这些工具预测了细菌CR(VI) - 氧化系统中黄素还原酶蛋白的基于结构的功能同源。由于其较高的铬酸盐耐药性和降低潜力,可有效地用于铬酸盐诱导的皮炎,可有效地用于乳酸酶乳酸乳酸酶乳酸乳腺乳酸乳酸乳酸酶。
引言糖尿病是一种健康状况,可持续很长时间,并影响身体如何处理能量食物。当胰岛素不足或细胞对胰岛素不反应有效时会导致血液中过量葡萄糖时发生。这会导致严重的健康并发症,例如心脏病,视力丧失和肾脏疾病(1)。当前,全球人口的很大一部分受1型或2型糖尿病的影响。此外,有越来越多的证据表明,诊断为糖尿病的个体的数量预计将迅速增加,从2017年的4.25亿到到2030年估计的6亿美元(2,3)。1型糖尿病通常是由免疫系统细胞的破坏引起的,导致完全缺乏胰岛素。同时,2型糖尿病通常是由β-细胞胰岛素分泌的逐渐丧失引起的,通常与胰岛素抵抗相结合(4)。糖尿病可能导致各种生理问题,其中之一是影响许多糖尿病患者的足球溃疡。糖尿病足溃疡(DFU)是指
摘要。世界卫生组织将益生菌定义为“活体生物,如果以足够的量给予益生菌,则赋予宿主的健康益处”。研究最精心的益生菌之一是limosilactobacillus reuteri,这是一种革兰氏阳性的棒状细菌,可在哺乳动物和鸟类的粘膜表面定居,被认为是人类微生物组的自卫星。遗传分析已经确定了这种微生物与其宿主共同发展,这是建立共同关系的前提。一方面,L。Reuteri通过释放抗菌化合物(例如Reuterin和数值活性代谢产物)来促进宿主的健康,这些化合物可以越过上皮屏障并达到不同的靶标。其次,由于形成生物膜的能力,它可以直接防止致病细菌通过致病性细菌的粘膜定植。由L. Reuteri产生的许多效应分子的表征提供了对机制的广泛理解,通过这种机制,它不仅在胃肠道内显示出抗微生物和免疫调节活性,而且还可以影响身体远端位置的正确平衡。这个微型审查的过程简要概述了,该概述与R. Reuteri高乳杆菌的最著名特性有关所涉及的主要生物过程。