引言在医疗保健和农业中,抗生素的广泛使用导致了抗生素耐药细菌的出现,从而降低了我们有效治疗常见感染的能力。通过预测抗生素耐药性达到临界点,我们必须开发新颖的,抗生素的药物,以避免由于当前可治疗的常见感染而导致死亡率增加的未来。在美国,处方15%的抗生素是用于治疗尿路感染(UTIS)(1)每年影响数百万妇女的情况。对于那些患有急性UTI的人,25%的经历了复发性UTI(RUTIS)(1),每年涉及多种感染,需要多种抗生素课程。UTI的近期历史是RUTI的已知危险因素(2),但是导致复发的机制大多未知。此外,抗生素耐药性使UTI更难治疗,并且通常需要使用广谱抗生素。具有讽刺意味的是,抗生素的使用也是UTI的重要危险因素(3),这可能是由于对肠道菌群的有害影响所致,其中大多数尿道疾病均存在。大约50%的rutis是由引起初始感染的相同菌株引起的(4),主张与宿主相关的储层没有被当前治疗充分清除。因此,迫切需要更好地理解与宿主相关的储层中的尿路病动态,以开发限制发病率和[…]
引言在医疗保健和农业中,抗生素的广泛使用导致了抗生素耐药性的生产力的出现,从而降低了我们有效治疗常见感染的能力。通过预测抗生素耐药性达到了临界点,我们必须开发新的,抗生素的药物,以避免由于可治疗的常见常见感染而导致死亡率增加的未来。在美国,预先描述了15%的抗生素治疗尿路感染(UTIS)(1)每年影响数百万妇女。对于那些患有急性UTI的人,25%的经历了复发性UTI(RUTIS)(1),每年涉及多种感染,需要多种抗生素课程。UTI的近期历史是RUTI的已知危险因素(2),但是导致复发的机制大多未知。加上抗生素的耐药性使UTI更难治疗,并且通常需要使用广谱抗生素。具有讽刺意味的是,抗生物使用也是UTI的重要危险因素(3),这可能是由于对肠道微生物群的相关删除作用,其中大多数尿道病均居住。大约50%的rutis是由引起初始感染的相同菌株引起的(4),主张与当前处理没有充分清除的宿主相关的疗程。因此,迫切需要更好地理解与宿主相关的储层中的尿路病动力学,以开发限制发病率和抗生素消耗的治疗方案。此过程utis最常见的是肝病大肠杆菌(UPEC)引起的,它位于肠道中,可以升高尿路以引起感染。
弯曲振动自由度的研究得益于其二维特性和两个明确的物理极限——线性和弯曲配置——以及中间配置——准线性物种,其特点是大振幅运动,使其具有丰富的光谱特征[1]。正或非单调的非谐性,后者与非刚性分子的 Birge-Sponer 图中 Dixon 凹陷的出现有关[2],以及由于跨越线性壁垒附近的状态波函数中线性和弯曲特征的混合而导致的异常旋转光谱[3,4],是准线性物种光谱中最显著的光谱特征。光谱方法的重大进步和发展使得人们能够通过实验获得多种分子物种的高弯曲泛音。通过这种方式,我们有可能获得实验光谱信息,从而研究能量接近线性势垒的系统 [5,6]。水 [7] 和 NCNCS [8–10] 的研究结果具有特别重要的意义。近年来,量子单值化概念最初由 Cushman 和 Duistermaat [11] 提出,后由 Child [12] 重新研究,对系统中的状态分配有很大帮助。由于状态与线性势垒的接近性,波函数的复杂性妨碍了正确的状态标记 [5–8,13]。这是从经典力学中借用的概念,它依赖于拓扑奇点,当系统能量大到足以探测局部鞍点或最大值时,就会发生拓扑奇点,从而阻止定义全局作用角变量 [14]。非刚性分子弯曲振动的理论建模需要特殊的工具,因为大振幅振动自由度会强烈耦合振动和转动自由度。Hougen-Bunker-Johns 弯曲哈密顿量 [15] 是该领域的一项开创性工作。这项工作后来扩展到半刚性弯曲哈密顿量 [16] 和一般半刚性弯曲哈密顿量 [17]。基于上述发展而产生的 MORBID 模型 [18] 目前是分析非刚性分子光谱的标准方法,其中需要同时考虑转动和振动自由度,以便建模实验项值并分配量子标签。代数方法,尤其是振动子模型,是分子光谱建模的传统积分微分方法的替代方法。该模型基于对称性考虑,并严重依赖于李代数的性质[ 19 ]。振子模型 (VM) 属于一类模型,该类模型将 U(n+1) 代数指定为 n 维问题的动力学或谱生成代数 [20]。类似的模型已成功应用于强子结构 [21,22] 和原子核 [23–25] 的建模。在 Iachello 引入的原始振子模型形式中,双原子分子种类的回旋振动激发被视为集体玻色子激发 [26],由于相关自由度的矢量性质,动力学代数为 U(3+1)=U(4) [25,27]。弯曲振动的二维性质以及简化振子模型形式以有效处理多原子系统的需要,自然而然地导致了二维极限振子模型(2DVM)的制定[28,29]。2DVM 定义的形式能够模拟弯曲自由度的线性和弯曲极限情况,以及表征中间情况的大振幅模式[30-33]。本研究中使用的代数哈密顿量的四体算符的扩展已于最近发表[34]。2DVM 还用于耦合弯曲器[28,35-37]、拉伸弯曲相互作用[38-41]和异构化反应中的过渡态[42]的建模。
从船舶和乘客安全的角度来看,持续监测和评估客船的运行脆弱性和事故敏感性至关重要。尽管现有的脆弱性监测解决方案主要来自水密门操作,但文献中缺少事故敏感性评估和监测的综合框架。因此,本文提供了一种直接的方法,利用根植于与人类表现相关的第一原理的坚实基础的启发式方法。所提出的方法可以评估在公海和沿海航行中运行的船舶的事故敏感性。所提出的框架基于可观察和相关因素,这些因素会影响航行员的表现,从而影响事故概率。框架的布局以及所开发模型的参数基于海事和航空领域的文献调查、从海事专家那里获得的知识以及使用内部开发的船舶相遇模拟器进行的广泛模拟。随后,该模型应用于选定的案例研究,涉及两种不同的船舶类型,即大型游轮和 RoPax 船。本文提出的案例研究的结果表明,所分析的船舶在大多数时间里发生事故的可能性可以忽略不计(87%),而 1% 的案例被标记为非常高
由于其两维的性质以及存在两个良好的物理极限 - 线性和弯曲的配置,以及中间性构造 - 质中性物种 - 质膜(Quasilinear)物种 - 由大峰值运动使其富有谱图,因此,的研究已被促进了自由度的研究。 Positive or non-monotonous anaharmonicities, the latter associated with the occurrence of the Dixon dip in the Birge-Sponer plot for nonrigid molecules [2], and anomalous ro- tational spectra due to the mixing of linear and bent characters in the wave functions of states straddling in the propinquity of the barrier to linearity [3, 4] are the most salient spectroscopic features可以在准线性物种的光谱中找到。 光谱法的显着进步和发展使得一些分子物种的高弯曲泛音的实验访问可能。 以这种方式,有可能访问实验光谱信息,从而可以在线性屏障周围研究系统[5,6]。 水[7]和NCNC [8-10]获得的结果特别相关。 最近,Cushman和Duistermaat [11]最初引入的量子单片概念并由Child [12]重新审视,这在波浪函数复杂性的系统中的分配大大帮助了状态,这是由于国家邻近的障碍与线性的障碍,妨碍了状态性的状态,妨碍了一个状态标记[5-8,13]。 这一领域的开创性作品是Hougen-Bunker-Johns Bender Hamiltonian [15]。的研究已被促进了自由度的研究。Positive or non-monotonous anaharmonicities, the latter associated with the occurrence of the Dixon dip in the Birge-Sponer plot for nonrigid molecules [2], and anomalous ro- tational spectra due to the mixing of linear and bent characters in the wave functions of states straddling in the propinquity of the barrier to linearity [3, 4] are the most salient spectroscopic features可以在准线性物种的光谱中找到。光谱法的显着进步和发展使得一些分子物种的高弯曲泛音的实验访问可能。以这种方式,有可能访问实验光谱信息,从而可以在线性屏障周围研究系统[5,6]。水[7]和NCNC [8-10]获得的结果特别相关。最近,Cushman和Duistermaat [11]最初引入的量子单片概念并由Child [12]重新审视,这在波浪函数复杂性的系统中的分配大大帮助了状态,这是由于国家邻近的障碍与线性的障碍,妨碍了状态性的状态,妨碍了一个状态标记[5-8,13]。这一领域的开创性作品是Hougen-Bunker-Johns Bender Hamiltonian [15]。这是一个从经典力学借来的概念,一旦系统能量足够大以探测局部鞍点或最大值,以防止定义全球动作角变量的定义[14]。非矛盾分子物种中弯曲振动的理论建模需要特殊工具,因为较大的振幅振动自由度强烈地伴随着自由度和旋转的自由度。这项工作后来扩展到了半irigid bender hamiltonian [16]和一般的semirigid bender hamiltonian [17]。基于上述开发的模型[18]目前是分析非矛盾分子光谱的标准方法,其中同时考虑了旋转和振动自由度的同时考虑实验术语值的建模和量子标签的分配所需。代数方法,尤其是Vibron模型是传统的分子模型的传统内部差异方法的替代方法。该模型基于对称考虑因素,并在很大程度上依赖于Lie代数的特性[19]。Vibron模型(VM)属于一个模型家族,该模型分配了U(n + 1)代数为n维问题的动力学或频谱生成代数[20]。类似的模型已成功地应用于哈德子[21,22]和核[23-25]的结构的建模。2DVM定义了一种形式主义,该形式主义能够建模弯曲程度的线性和弯曲限制案例,以及表征中间情况的大幅度模式[30-33]。在原始的Vibron模型形式主义中,由Iachello引入,双子型分子物种的反振动激发被视为集体骨气兴奋[26],并且动态代数为u(3+1)= u(4),由于自由度的相关程度[25,25,27]。弯曲振动的二维性质以及简化Vibron模型形式主义以有效地处理多原子系统的需求,自然而然地驱动着vibron模型(2DVM)的二维极限的制定[28,29]。最近发表了在本工作中使用的代数哈密顿量的四体操作员的扩展[34]。2DVM也已用于耦合弯曲器的建模[28,35-37],拉伸弯曲中的相互作用[38-41]和异构反应中的过渡态[42]。
植物已经发展出复杂的防御机制,以避免入侵潜在的病原体。尽管如此,改编的病原体部署效应子蛋白来操纵宿主的敏感性(S)基因,使植物防御能力无效。通过细菌病原体利用的植物基因的识别和突变对于产生具有持久和广谱耐药性的农作物很重要。由于潜在的多效性,突变体基因在抗性作物中的繁殖受到限制。新的基因组编辑技术为S基因的修饰开辟了新的可能性。在这篇综述中,我们着重于通过细菌操纵的S基因,并提出了其识别和精确修饰的方法。最后,我们提出编码转运蛋白的基因代表了一组新的S基因。
为确保世界粮食生产和实现农业的可持续性,我们迫切需要寻找替代方法来保护农作物免受疾病侵害。迄今为止所使用的抗病遗传性抗性大多基于单个显性抗性基因,这些基因介导对入侵者的特定识别,而这种抗性往往会被病原体变体迅速破坏。干扰植物易感性 (S) 基因提供了一种替代方法,可以为植物提供被认为更持久的隐性抗性。S 基因可使植物病害得以发生,而它们的失活为农作物的抗性育种提供了机会。然而,S 基因功能的丧失会产生多效性影响。基因组编辑技术的发展有望提供强有力的方法来精确干扰作物 S 基因功能并减少权衡。
甜罗勒(Ocimum Basilicum)是一种经济上重要的同二倍二磷脂(2n = 4 x = 48)草药,其全球产量受到质感生物营养性卵菌造成的质状疾病的威胁,peronospora belbahrii。通过CRISPR/CAS9的易感性诱变产生抗病品种,目前是维持偏爱性状的最有前途的策略之一,同时提高疾病抗性。先前的研究已经确定了拟南芥DMR6(抑制霉菌6)是降低霉菌造成的冰淇淋病原体透明质透明质球拟南芥拟南芥所需的S基因。在这项研究中,在流行的甜蜜罗勒品种基因诺植物中鉴定出了DMR6的甜罗勒同源物DMR6,发现存在于基因组中具有高拷贝数,并且在变体中具有多态性。生成了一个或两个靶向OBDMR6变体保守区域的单个指南RNA(SGRNA)的CRISPR/CAS9构建体,并用于通过农业细菌介导的转化来转化Genoveser。56 T0线,并通过使用CRISPR编辑(ICE)软件的干扰来分析OBDMR6片段的Sanger测序色谱图检测到OBDMR6的突变。在靶向位点中包含突变的54条线中,13个indel百分比大于96%,表明OBDMR6几乎完整的敲除(KO)。在从三个独立的T0线中得出的T1分离种群中鉴定出了由ICE确定的几乎完全的OBDMR6 KO的三个代表性转基因游离线。使用扩增子深测序确认突变。与野生型植物相比,对上述T1系的T2种子进行了疾病测定法显示,Sporangia的产生减少了61-68%,通过定量PCR(QPCR)确定的相对病原体生物量减少了69-93%。 这项研究不仅产生了无基因的甜罗勒品种,具有改善的霉菌耐药性,而且还有助于我们对甜质p的分子相互作用的理解。 belbahrii。疾病测定法显示,Sporangia的产生减少了61-68%,通过定量PCR(QPCR)确定的相对病原体生物量减少了69-93%。这项研究不仅产生了无基因的甜罗勒品种,具有改善的霉菌耐药性,而且还有助于我们对甜质p的分子相互作用的理解。belbahrii。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2021年4月8日。 https://doi.org/10.1101/2021.04.06.438540 doi:biorxiv preprint
大米的细菌疫病(BB)的抗抗病性抗病性是由于病原体xanthomonas oryzae PV的进化和适应而是一项持续挑战。oryzae(XOO),耕种水稻品种。对这种病原体的毒力的基础是转录激活剂(TAL)效应子,可激活宿主基因的转录,对病原体的毒力,效果或两者兼而有之。宿主植物的耐药性预计如果针对影响病原体毒力和舒适性的策略性毒力因子会更耐用。我们表征了TAL7B,这是一种导致大米病原体毒力的少量毒力因子,是病原体的效果因子,并且在XOO的地理上多样化的菌株中广泛存在。为了识别对这种保守效应器的抵抗来源,我们使用了带有质粒寄生的TAL7B副本的高毒素菌株来筛选Indica多父母的高级高级杂交(魔术)种群。,特定于TAL7B(QBB-TAL7B)。总体而言,有150个预测TAL7B基因靶标与QBB-TAL7B QTL重叠。其中21个在预测的效应结合元件(EBE)位点中显示了多态性,而23个完全失去了EBE序列。接种和生物信息学研究表明,TAL7B特异性QTL之一QBB-TAL7B -8中的TAL7B靶向是一个疾病敏感性基因,并且该基因座的抗性机制可能是通过易感性丧失。我们的工作表明,较小的毒力因素显着促进疾病,并提供了一种潜在的新方法来识别有效的疾病抗性。