Loading...
机构名称:
¥ 2.0

弯曲振动自由度的研究得益于其二维特性和两个明确的物理极限——线性和弯曲配置——以及中间配置——准线性物种,其特点是大振幅运动,使其具有丰富的光谱特征[1]。正或非单调的非谐性,后者与非刚性分子的 Birge-Sponer 图中 Dixon 凹陷的出现有关[2],以及由于跨越线性壁垒附近的状态波函数中线性和弯曲特征的混合而导致的异常旋转光谱[3,4],是准线性物种光谱中最显著的光谱特征。光谱方法的重大进步和发展使得人们能够通过实验获得多种分子物种的高弯曲泛音。通过这种方式,我们有可能获得实验光谱信息,从而研究能量接近线性势垒的系统 [5,6]。水 [7] 和 NCNCS [8–10] 的研究结果具有特别重要的意义。近年来,量子单值化概念最初由 Cushman 和 Duistermaat [11] 提出,后由 Child [12] 重新研究,对系统中的状态分配有很大帮助。由于状态与线性势垒的接近性,波函数的复杂性妨碍了正确的状态标记 [5–8,13]。这是从经典力学中借用的概念,它依赖于拓扑奇点,当系统能量大到足以探测局部鞍点或最大值时,就会发生拓扑奇点,从而阻止定义全局作用角变量 [14]。非刚性分子弯曲振动的理论建模需要特殊的工具,因为大振幅振动自由度会强烈耦合振动和转动自由度。Hougen-Bunker-Johns 弯曲哈密顿量 [15] 是该领域的一项开创性工作。这项工作后来扩展到半刚性弯曲哈密顿量 [16] 和一般半刚性弯曲哈密顿量 [17]。基于上述发展而产生的 MORBID 模型 [18] 目前是分析非刚性分子光谱的标准方法,其中需要同时考虑转动和振动自由度,以便建模实验项值并分配量子标签。代数方法,尤其是振动子模型,是分子光谱建模的传统积分微分方法的替代方法。该模型基于对称性考虑,并严重依赖于李代数的性质[ 19 ]。振子模型 (VM) 属于一类模型,该类模型将 U(n+1) 代数指定为 n 维问题的动力学或谱生成代数 [20]。类似的模型已成功应用于强子结构 [21,22] 和原子核 [23–25] 的建模。在 Iachello 引入的原始振子模型形式中,双原子分子种类的回旋振动激发被视为集体玻色子激发 [26],由于相关自由度的矢量性质,动力学代数为 U(3+1)=U(4) [25,27]。弯曲振动的二维性质以及简化振子模型形式以有效处理多原子系统的需要,自然而然地导致了二维极限振子模型(2DVM)的制定[28,29]。2DVM 定义的形式能够模拟弯曲自由度的线性和弯曲极限情况,以及表征中间情况的大振幅模式[30-33]。本研究中使用的代数哈密顿量的四体算符的扩展已于最近发表[34]。2DVM 还用于耦合弯曲器[28,35-37]、拉伸弯曲相互作用[38-41]和异构化反应中的过渡态[42]的建模。

激发态的量子保真度磁化率......

激发态的量子保真度磁化率......PDF文件第1页

激发态的量子保真度磁化率......PDF文件第2页

激发态的量子保真度磁化率......PDF文件第3页

激发态的量子保真度磁化率......PDF文件第4页

激发态的量子保真度磁化率......PDF文件第5页

相关文件推荐