HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
硼-二吡咯亚甲基 (BODIPY) 染料由于易于合成、模块化、可调的光物理和电化学性质、稳定性以及对可见光的强吸收而被广泛应用于光驱动过程。 [1] 根据 BODIPY 核心结构的取代模式,单线态和三线态激发态可以在光子吸收时优先填充,从而产生不同的应用。例如,BODIPY 的荧光特性已在生命科学中被用于生物传感应用或成像活动。 [2] 获取 BODIPY 染料的长寿命三线态可应用于光动力疗法、通过三线态-三线态湮没的光子上转换或光催化。 [3] 将重原子(即 Br、I、Au、Pt、Ru)共价连接到 BODIPY 核心结构是一种常用方法,通过自旋轨道耦合 (SOC) 诱导的系统间窜改来促进三线态的布居。 [4] 过去十年来,这些含重原子染料在光氧化还原催化和能量转移过程中的应用在文献中蓬勃发展。[5] 例如,含卤素的 BODIPY 催化剂已用于光氧化还原有机反应,如 N 取代四氢异喹啉的功能化、[6] 呋喃的芳基化和
生物催化剂因其精致的立体化学而受到倡导,但是测量对映体多余的色谱分离速度缓慢,可以瓶颈它们的发展。为了克服这一限制,我们生成对映选择性转录因子(ETF),将对映异构体特异性分析物浓度转换为可编程基因表达输出。使用大量平行的报告基因测定法,我们测量了300,000多个转录因子变体的剂量反应曲线,以响应对映体中间体和药物溶性溶性的术前体。利用这个全面的数据集,我们定量比较由随机,位点饱和和shu thu诱变产生的变体的灵敏度,选择性和动态范围,从而使ETF分离具有特殊的特异性特异性。高分辨率结构进一步阐明了四个动物如何实现对映选择性和电荷相互作用,使亚胺反应产物与亚胺前体不同。最后,我们使用两个ETF来创建高通量手性屏幕,我们将其与荧光激活的细胞排序配对,以倒置的对映选择性发展亚胺还原酶。此方法为不对称反应筛选提供了一种快速且可扩展的方法,从而促进了药物制造的生物催化剂设计的进步。
并将这种疾病命名为伊藤色素减退症 [2]。后来人们发现,伊藤色素减退症不仅是一种皮肤病,还会影响其他系统,主要是中枢神经系统和肌肉骨骼系统 [3,4]。一些理论认为,伊藤色素减退症是染色体嵌合体的一种非特异性表现;然而,并不是每例伊藤色素减退症都有这种表现 [5,6]。发病率和患病率估计在 1/7540 到 1/82,000 之间 [6]。色素减退症的典型特征是色素减退性病变,可能呈旋涡状、线状条纹或沿 Blaschko 线的斑块。它们主要出现在躯干上,但也可能出现在四肢、面部和头皮上 [7]。病变可能在出生时或出生后 18 个月内出现 [8]。在此,我们报告了一例患有多种先天性异常且无 HI 家族史的 HI 病例。
1。Univ Rennes,CNRS,IGDR(IGDR InstitutdeGénétiqueetdéveloppementde Rennes)-UMR 16 6290,F -35000 Rennes,法国17 2。大学。Grenoble Alpes,Inserm U1216,CEA,CNRS,Grenoble Institut Neurosciences,18 Gin,38000 Grenoble,法国,法国。19 3。梅西大学,基本科学学院,4410,北帕默斯顿北,新西兰21 22#。通讯作者:regis.giet@univ-rennes1.fr 23 23 24 LEAD联系25的进一步信息和对本研究产生的试剂的要求,并应通过RégisGiet(regis.giet.giet@univ-univ-rennes1.fr)来实现26个。27 28
ilke aydogan:i.aydogan@ieseg.fraurélienbaillon:baillon@em-lyon.com emmanuel kemel:emmanuel.kemel@gemel@greg-hec.com chen li:c.li@ese@ese.eur.nl,我们感谢Peter Wakker和Han Bleichrodt和Han Bleichrodt的帮助和讨论。Baillon承认NWO Vidi Grant 452-13-013的财务支持。Aydogan承认该地区Haut-De-France(2021.00865 Clam)和欧盟的Horizon Horizon Europe Research and Innovation计划,根据Grant协议(101056891具有能力)。li感谢NWO Veni Grant VI.Veni.191E.024的财务支持。1 See, for instance, Phillips and Edwards ( 1966 ), Edwards ( 1968 ), Tversky and Kahneman ( 1974 ), El-Gamal and Grether ( 1995 ), Oswald and Grosjean ( 2004 ), Möbius, Niederle, Niehaus, and Rosenblat ( 2022 ), Bén- abou and Tirole ( 2016 ), Ambuehl and Li ( 2018 ).
通过将库珀对的反平行电子旋转沿空地外方向锁定,使平面上临界磁场的平面上限上限超过了保利的极限。首先是在过渡金属二分法的完全二维单层中明确证明的,具有大型旋转轨道耦合和破裂的反转对称性。从那时起,几项研究表明它也可以存在于分层的散装材料中。在我们先前的研究中,我们阐明了基于散装超导性超导性的基本微观机制,基于通过绝缘层和限制反演对称性而导致的超导层之间的电子耦合减少。但较早的研究表明,在某些过渡金属二甲藻元中多型pauli paparagnetic极限也违反了。在这里,使用热容量测量值我们明确证明,原始的非中心体积4H A -NBSE 2多型物质显着违反了Pauli的极限。在理论模型中使用了使用实验确定的晶体结构从Ab ITIOL计算获得的频带结构参数,该模型在理论模型中使用,该模型提供了仅基于破裂的反转对称性的ISING保护的微观机制。
2 – 一个人写出追求真理的文本,就会部署一支隐喻和人际关系大军。但文本拥有一个视界,在这个视界中,文本与保证从文本中挖掘真理的解释者的视界进行批判性融合。文本以理解为前提。因此,对军队的批判性解释(理想理解)使得真理得以揭示。批判性视界的融合反映了文本所表达的愿望对象,即激励人们达到神化的地位。因为作者的意图和愿望是神化的隐喻大军,所以它是全面的。在给定的评价和解释背景下,作者是先行解释的仲裁者,这种仲裁者会自动适应真理,因为作者在写作文本的那一刻就只瞄准真理。
图 1. 带有原子标记方案的 CuL T . DMSO 复合物的 X 射线晶体结构 ORTEP 图。位移椭球以 50% 概率水平绘制。H 原子显示为任意半径的圆。铜配合物的循环伏安法揭示了对应于 Cu I /Cu II 氧化还原过程的准可逆氧化还原对。采用 DFT 和 TD-DFT 理论在 M062X/6-311**G/ SDD 水平进行的量子计算与实验数据高度一致。结果表明,铜化合物具有比尿素更大的静态和动态超极化率值。例如,H 2 LT 的 β 0 值大约是尿素的 68 倍。结果预测所研究的化合物能够成为优异的二阶和三阶 NLO 材料。所制备的配合物以H 2 O 2 为氧化剂,能有效催化环己烯的均相氧化反应,以CuL Bz 为催化剂,转化率可达98% 。以所研究的配合物为捕集剂,在酚红氧化溴化反应中探究了溴过氧化物酶活性,该配合物可作为溴过氧化物酶的潜在功能模型,CuL Bz 催化剂表现出较好的催化活性,反应速率常数k 为2.203 × 10 5 (mol L -1 ) -2 s -1 。[1] A. Okuniewski,D. Rosiak,J. Chojnacki,B. Becker,具有Hg(Cl, Br, I)O = Chalogen 键和不寻常的Hg2S2(Br/I)4 核的新型配合物。 τ'4 结构参数的实用性,Polyhedron 90 (2015) 47 – 57,https://doi.org/10.1016/j.poly.2018.02.016。[2] Z. Tohidiyan、I. Sheikhshoaie、M. Khaleghi、JT Mague,一种含四齿席夫碱的新型铜 (II) 配合物:合成、光谱、晶体结构、DFT 研究、生物活性及其纳米金属氧化物的制备,J. Mol. Struct. 1134 (2017) 706 – 714,https://doi.org/10.1016/j.molstruc.2017.01.026。 [3] TH Sanatkar、A. Khorshidi、E. Sohouli、J. Janczak,四齿 N2O2 席夫碱配体的两种 Cu(II) 和 Ni(II) 配合物的合成、晶体结构和表征及其在肼电化学传感器制造中的应用,Inorg. Chim. Acta 506 (2020),119537,https://doi.org/10.1016/j.ica.2020.119537。作者非常感谢阿尔及利亚高等教育和科学研究部的财政支持。他们感谢意大利那不勒斯费德雷科 II 大学化学科学系的 Francesco RUFFO 教授和 Angella TUZI 教授的帮助。此外,作者非常感谢法国里昂大学、克劳德伯纳德里昂第一大学、CNRS UMR 5280、分析科学研究所(69622 Villeurbanne Cedex)提供的计算设施。