我们正在积极建立一个以围绕配料为中心的机器人 - AS-Service(RAAS)平台业务。该平台是专门设计的,旨在帮助中小型公司实施和管理机器人自动化,即使它们缺乏机器人技术专业知识。我们的目标是利用我们先进的机器人技术来提高每个客户的生产率。
简介。数十年的研究表明,辐射能够极大地改变材料的物理化学性质。这种影响会导致材料和相关设备的退化,并限制其在特定应用中的使用 [1-7]。电子在物质中的路径上可以以多种方式相互作用 [8]。它们的大部分能量通过与电子的相互作用转移到材料中:这些碰撞是电离现象的原因。同时,电子还可以与原子核发生碰撞,导致它们从常规晶体位置移位。该过程的结果是产生空位和间隙原子。这种过程被定义为非电离能量损失,它决定了位移损伤 [6, 9]。位移损伤会导致材料性能和设备在恶劣环境中的性能下降。电子设备 [6] 和用于太空应用的太阳能电池 [5, 10] 就是这种情况。在这一领域,电子辐照是一种广泛使用的工具,用于测试太阳能电池的辐射响应,并确保在整个卫星任务期间产生足够的能量。随着时间的推移,电子辐照已转向寻找更耐辐射的材料,以及生产能够抵抗太空极端条件的太阳能电池[11]。因此,辐照越来越多地参与到研究项目中,这种趋势仍在持续和发展。在其他研究领域也可以找到类似电子辐照的例子[1]。高能电子(HEE)辐照与其他辐照技术确实不同:事实上,由于电子质量小,向较重原子核的能量转移仍然非常小。质子或其他重粒子可以诱导类似的损伤过程,但这些粒子传递的能量非常重要,因此第一次碰撞会产生一系列二次事件,导致产生复杂且广泛的缺陷[1,6,9,12]。相反,HEE 辐照主要产生孤立的点缺陷,即由空位和间隙原子组成的 Frenkel 对 [13]。然后,当
摘要:半导体纳米晶体中电子和空穴之间的静电相互作用 (EI) 强度对其光电系统的性能有重大影响,不同的光电器件对活性介质的 EI 强度有不同的要求。然而,实现特定光电应用的 EI 强度的大范围和微调是一项艰巨的挑战,特别是在准二维核壳半导体纳米片 (NPL) 中,因为沿厚度方向的无机壳外延生长仅对量子限制效应有贡献,但却会严重削弱 EI 强度。在此,我们提出并展示了一种双梯度 (DG) 核壳结构的半导体 NPL,通过平面内结构调制控制局部激子浓度来按需调整 EI 强度,这通过对辐射复合率和激子结合能的广泛调整得到了证明。此外,这些激子浓度设计的 DG NPL 还表现出接近 1 的量子产率、高光和热稳定性以及显著抑制的自吸收。作为概念验证演示,基于 DG NPL 实现了高效的颜色转换器和高性能发光二极管(外部量子效率:16.9%,最大亮度:43,000 cd/m 2)。因此,这项工作为高性能胶体光电器件应用的开发提供了见解。关键词:半导体纳米片、接近 1 的量子产率、可定制的静电相互作用、高稳定性、光电子学
图2将Ni原子插入石墨烯晶格。a-b)HAADF-STEM图像显示了两个不同的宏伟概述的样品概述,显示了石墨烯表面形成的3-5 nm ni岛。在Ni岛之间还观察到单个Ni原子。c)石墨烯表面上的ni岛,经Ni L 23鳗鱼核心损失边缘证实。d- e)说明了梁拖动技术,其中电子束位于源材料上(d中的红色箭头的尾巴)),并拖动到原始的石墨烯(d中的红色箭头头))。此过程在ni原子附加到的石墨烯中创建点缺陷时,吐出了Ni源原子。iNSET在e)中显示了带有原子模型覆盖的主HAADF-STEM图像的傅立叶过滤版本,显示了Ni原子的位置。Ni原子位置表示单个和DI-VACACES的职业。f)几分钟的电子束暴露后,掺杂剂的较高分辨率图像。观察到的结构的原子模型被覆盖。g)-i)通过在Ni岛和原始石墨烯上扫描电子束来插入Ni原子的一个例子。最初,石墨烯的斑块没有掺杂剂;由于产生缺陷并将Ni原子从相邻的Ni岛散射到石墨烯上,Ni原子附着在缺陷位点上并掺入晶格中。随着越来越多的C原子从晶格中敲打,孔开始形成,Ni原子装饰边缘,i)。图像E-F)和H-I)使用PyCroscopicy中的原理分析过滤。60,61
肿瘤内异质性高和癌细胞群进化是血液系统恶性肿瘤和实体瘤治疗耐药性的主要驱动因素 1–5 。在急性髓系白血病 (AML) 中,大量单细胞基因组分析已在细胞亚群水平上绘制了疾病进展和治疗耐药性的克隆进化过程,并破译了与化疗耐药性、复发和临床结果有关的白血病细胞亚群中的细胞层次和重编程 6–9 。同样,在实体瘤中,高级别浆液性卵巢癌 (HGSC) 患者的克隆分析和纵向取样揭示了进化轨迹,具有与治疗反应相关的不同基因组和形态学特征 10 。尽管有如此丰富的信息,我们仍然缺乏针对化疗耐药亚群的方法,以提高复发患者的二线治疗效果,或通过同时抑制具有足够高效力的多个白血病细胞亚群来避免对一线疗法产生耐药性
与饮食相关的疾病是全球死亡的主要原因,需要量身定制有效的营养建议的策略。个性化的营养建议越来越被认为比人口水平的建议更有效,以改善饮食摄入和健康成果。提供个性化营养建议的潜在工具是使用代谢性纤维组成的分类型分类。总而言之,分类已成功地用于人类营养研究中,以识别对饮食挑战,干预措施以及饮食 - 疾病关联的差异反应的个体的子群体。代谢型亚组的适用性得到了其他领域(例如糖尿病研究)的证实,在该研究中,代谢性促进已被强烈使用,以鉴定显示出疾病疾病的模式和并发症的患者的亚组。但是,研究方法的效率很少,以改善饮食摄入和健康参数。虽然将元型应用于量身定制和提供营养建议是非常有希望的,但对于进一步的开发和接受该方法是必要的。
偏差定制使量子纠错码能够利用量子比特噪声不对称性。最近,有研究表明,表面码的一种修改形式 XZZX 码在偏置噪声下表现出显著改善的性能。在这项工作中,我们证明量子低密度奇偶校验码也可以进行类似的偏差定制。我们引入了一种偏差定制的提升乘积码构造,该构造提供了一个框架,可将偏差定制方法扩展到二维拓扑码系列之外。我们给出了基于经典准循环码的偏差定制提升乘积码的示例,并使用信念传播加有序统计解码器对其性能进行了数值评估。我们在非对称噪声下进行的蒙特卡罗模拟表明,与去极化噪声相比,偏差定制码在错误抑制方面实现了几个数量级的提高。
摘要 简介 南亚人比欧洲白人更容易患妊娠糖尿病 (GDM)。饮食和生活方式的改变可能会预防 GDM,并减少母亲和后代的不良后果。我们的研究旨在评估针对文化定制的个性化营养干预对具有 GDM 风险因素的南亚血统孕妇在 2 小时 75 克口服葡萄糖耐量试验 (OGTT) 后的血糖曲线下面积 (AUC) 的有效性和参与者的可接受性。方法与分析 总共有 190 名南亚孕妇,她们至少具备以下 2 个 GDM 风险因素——孕前体重指数 > 23、年龄 > 29、饮食质量差、直系亲属有 2 型糖尿病家族史或既往妊娠期间患有 GDM。她们将在妊娠 12-18 周期间入组,并以 1:1 的比例随机分配到:(1) 常规护理,加上每周发短信鼓励散步和发放纸质讲义或 (2) 由文化一致的营养师和健康教练制定和提供的个性化营养计划;并使用 FitBit 跟踪步数。干预持续 6-16 周,具体取决于招募的周数。主要结果是妊娠 24-28 周期间三个样本 75 克 OGTT 的葡萄糖 AUC。次要结果是根据 Born-in-Bradford 标准(空腹血糖 > 5.2 mmol/L 或餐后 2 小时 > 7.2 mmol/L)的 GDM 诊断。伦理与传播 本研究已获得汉密尔顿综合研究伦理委员会 (HiREB #10942) 的批准。研究结果将通过科学出版物和以社区为导向的策略在学术界和政策制定者中传播。试验注册号 NCT03607799。
许多新兴应用中的主流介电储能技术,如可再生能源、电气化交通和先进推进系统,通常需要在恶劣的温度条件下运行。然而,在当前的聚合物介电材料和应用中,优异的电容性能和热稳定性往往是互相排斥的。在这里,我们报告了一种定制结构单元以设计高温聚合物电介质的策略。预测了由不同结构单元组合而成的聚酰亚胺衍生聚合物库,并合成了 12 种代表性聚合物用于直接实验研究。这项研究为实现在高温下具有高能量存储能力的坚固稳定的电介质所必需的决定性结构因素提供了重要的见解。我们还发现,当带隙超过临界点时,高温绝缘性能的边际效用会递减,这与这些聚合物中相邻共轭平面之间的二面角密切相关。通过实验测试优化和预测的结构,观察到在高达 250°C 的温度下能量存储增加。我们讨论了将该策略普遍应用于其他聚合物电介质以进一步提高性能的可能性。