主宰着人类的存在。Psychothotonix 是第一个将现实定义为大脑中的人类意识(内部图像状态)与外部客观现实相互作用的技术/数学模型,从而产生一种新型的时空图。以矢量形式捕获图像数据的方法保持了量子数据的完整性,并允许数据科学家轻松执行计算(矢量加法/归一化)以解释多个人的内部(B)(E)(D)矢量状态的影响,以及使用张量微积分描绘任何矢量或聚合矢量随时间移动的曲线的能力,从而能够测量个人或群体对外部刺激(外部图像)的内部(B)(E)(D)变化。PT 球体及时捕获量子数据(外部/内部)图像,这些图像也可以 1:1 映射到量子位。随着量子计算领域的技术创新不断,最终将开发出一种可创建足够数量的相干/稳定量子位的商业上可行的计算机。在不久的将来,任何收集到的 PT Sphere 矢量数据都将可供量子计算机使用。
Bini-Capovani-Lotti-Romani (1979) 研究了当矩阵的一个元素设置为零时,是否可以通过五次乘法(而不是简单的 6 次)来计算 M ⟨ 2 ⟩,即这个简化的矩阵乘法张量的秩是否为 5。
i) 一种适用于通用 n 级量子系统的具有普遍有效性的无坐标算法;ii) 当量子发散函数(量子相对熵)满足数据处理不等式(DPI)时,则得到的量子度量满足 MP。
其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,这是因为在完全正的、保迹映射下必须具有单调性,这代表了经典粗粒化量子版本 [ 35 , 40 ]。从无穷大的角度来看,作用量φ可以用 S + 上的基本矢量场来描述,从而提供了酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(有关更多信息,请参见第 2 节),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u ( H ) 是 H 上有界线性算子空间 B ( H ) 的李子代数,具有由线性算子之间的交换子 [· , ·] 给出的李积。特别地,可以证明 B ( H )(具有 [· , ·] )同构于 U ( H ) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL ( H ) 的李代数。此外,已知 [ 9 , 15 , 26 , 27 ] GL ( H ) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据
作用 β 在 S 上是传递的,并将其变成齐次流形[2-5]。因此,U(H) 正则作用的基本向量场形成 GL(H) 作用的基本向量场代数的李子代数。[6] 证明了,为了描述 β 的基本向量场,只需考虑 U(H) 在 S(H) 上的正则作用的基本向量场以及与期望值函数 la(ρ)=Tr(aρ) 相关的梯度向量场,其中 a 是 H 上有界线性算子空间 B(H) 中的任意自伴元素,借助于所谓的 Bures-Helstrom 度量张量 [7-12]。这个例子提供了酉群 U(H)、S(H) 的 GL(H) - 齐次流形结构、Bures–Helstrom 度量张量和期望值函数之间的意外联系。然而,这并不是单调度量张量与一般线性群 GL(H) “相互作用”的唯一例子。事实上,在 [6] 中,还证明了 U(H) 正则作用的基本向量场以及与期望值函数相关的梯度向量场通过 Wigner–Yanase 度量
其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,因为在代表经典粗粒化量子版本的完全正、保迹映射下,单调性是必须的 [ 35 , 40 ]。从无穷小角度来看,作用量 φ 可以用 S + 上的基本矢量场来描述,从而提供酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(第 2 节将对此进行详细介绍),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u(H) 是 H 上有界线性算子空间 B(H) 的李子代数,具有由线性算子之间的交换子 [·,·] 给出的李积。特别地,可以证明 B(H)(具有 [·,·])同构于 U(H) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL(H) 的李代数。此外,已知 [9,15,26,27] GL(H) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据
过程张量矩阵积算子 (PT-MPO) 能够对空前广泛的开放量子系统进行精确的数值模拟。通过以 MPO 形式表示环境影响,可以使用已建立的算法对其进行有效压缩。压缩的 PT-MPO 内键的维度可以看作是环境复杂性的指标。在这里,我们表明,内键本身(而不仅仅是其维度)具有具体的物理意义:它们表示全环境刘维尔空间的子空间,该子空间承载着可能对后续开放量子系统动力学影响最大的环境激发。这种联系可以用有损线性变换来表示,其伪逆有助于提取环境可观测量。我们通过提取中心自旋问题的环境自旋、耦合到两个引线的量子系统的电流、从量子发射器发射到结构化环境中的光子数量以及驱动非马尔可夫量子系统中总吸收能量在系统、环境和相互作用能量项中的分布来证明这一点。数值测试进一步表明,不同的 PT-MPO 算法将环境压缩到相似的子空间。因此,PT-MPO 内部键的物理解释既提供了概念上的理解,也使新的实际应用成为可能。
摘要 — 量化通常用于深度神经网络 (DNN),通过降低激活和权重(又称张量)的算术精度来减少存储和计算复杂度。高效的硬件架构采用线性量化,以便将最新的 DNN 部署到嵌入式系统和移动设备上。然而,线性均匀量化通常无法将数值精度降低到 8 位以下,而不会牺牲模型精度方面的高性能。性能损失是由于张量不遵循均匀分布。在本文中,我们表明大量张量符合指数分布。然后,我们提出 DNA-TEQ 以自适应方案对 DNN 张量进行指数量化,以在数值精度和精度损失之间实现最佳权衡。实验结果表明,DNA-TEQ 提供的量化位宽比以前的方案低得多,平均压缩率比线性 INT8 基线高出 40%,准确度损失可以忽略不计,并且无需重新训练 DNN。此外,DNA-TEQ 在指数域中执行点积运算方面处于领先地位。对于一组广泛使用的 DNN,与基于 3D 堆叠内存的基线 DNN 加速器相比,DNA-TEQ 平均可提供 1.5 倍的加速和 2.5 倍的节能。索引术语 —DNN、量化、指数、Transformer
雷达在恶劣天气下的稳健性和提供动态信息的能力使其成为高级驾驶辅助系统 (ADAS) 中摄像头和激光雷达的宝贵补充 [1]。尽管用于 RGB 图像和激光雷达点云 (PC) 的语义分割深度学习方法已经很成熟,但它们在雷达中的应用仍未得到充分探索,尤其是包含额外海拔信息的 4D 雷达数据 [2] [3] [4] [5]。本文通过提出一种直接在距离-方位角-海拔-多普勒 (RAED) 张量上执行语义分割的方法来解决这一研究空白。此外,还引入了一种新颖的自动标记流程来在 RaDelft 数据集中生成逐点多类标签,从而实现使用雷达数据的联合检测和分类。