目的:间变性甲状腺癌 (ATC) 是最致命的人类癌症之一,且治疗选择很少。我们旨在确定美国食品药品管理局 (FDA) 已批准用于治疗实体癌的靶向药物,这些药物可能对 ATC 有效。设计:数据库挖掘。方法:通过筛选 MyCancerGenome 和美国国家癌症研究所的数据库,确定 FDA 批准的靶向治疗药物。通过查询 Drugbank 将药物与靶基因联系起来。随后,在 MyCancerGenome、CIViC、TARGET 和 OncoKB 中挖掘出预测会导致药物敏感性或耐药性的基因变异。我们在 Cancer Genome Atlas 数据库 (TCGA) 中搜索 ATC 患者,并探究他们的测序数据,寻找预测药物反应的基因变异。结果:在研究中,确定了 155 种 FDA 批准的药物,其中有 136 个潜在靶向基因。在 TCGA 中发现的 33 名患者中,有 17 名 (52%) 至少有一个靶向基因的基因变异。 45% 的患者出现点突变 BRAF V600E。18% 的病例出现 PIK3CA。3% 的病例分别检测到 ALK 和 SRC 扩增。15% 的患者显示 BRAF 和 PIK3CA 共同突变。除 BRAF 抑制剂外,PIK3CA 抑制剂 copanlisib 显示出基因预测的反应。其余 146 种 (94%) 药物没有或很低(低于 4% 的病例)显示出基因预测的药物反应。结论:虽然携带 BRAF 突变的 ATC 可以从 BRAF 抑制剂中受益,并且对于某些患者,包括 PIK3CA 抑制剂在内的联合策略可能会增强这种效果,但目前 FDA 批准的选项并不直接针对 BRAF WT ATC 的改变。
摘要:过去二十年,基因变异在甲状腺癌中的作用研究取得了重要进展。一个关键原因与技术方法的发展有关,这些方法允许在体外和体内模拟基因变异,以及最近的基因编辑方法。CRISPR/Cas 方法已成为一种编辑基因组中几乎任何 DNA 序列的切实工具。为了诱导双链断裂和可编程基因编辑,Cas9 内切酶由与 DNA 中的目标序列互补的单向导 RNA (sgRNA) 引导。基因编辑本身发生在细胞修复断裂的 DNA 时,可能会错误地改变原始 DNA 序列。在这篇综述中,我们探讨了 CRISPR/Cas 系统的原理,以促进对主流技术及其在基因编辑中的应用的理解。此外,我们探索了 CRISPR/Cas 在不改变 DNA 序列的情况下进行基因调节的新应用,并为那些有兴趣开始“CRISPRing”任何给定基因的人提供了干实验室体验。在最后一部分,我们将讨论 CRISPR/Cas 基因编辑工具所促进的甲状腺癌生物学知识的进展。
摘要:心力衰竭影响着全球 6400 多万人,严重影响着他们的生存和生活质量。为了开发新的治疗方法,迫切需要探索其病理生理学和分子基础。甲状腺激素信号在进化上是保守的,它控制着基本的生物过程,在发育和代谢中起着至关重要的作用。它的活性形式是 L-三碘甲状腺原氨酸,它不仅通过与核受体结合来调节重要的基因表达,而且还具有非基因组作用,控制着关键的细胞内信号。应激刺激,如急性心肌梗塞,会导致甲状腺激素信号的变化,尤其是甲状腺激素与其核受体的关系的变化,这与胎儿发育程序的重新激活、心肌细胞的结构重塑和表型变化有关。信号传导中胎儿样特征的重现可能部分是心肌重现其发育程序并使心肌细胞增殖并最终再生的不完整努力。在这篇综述中,我们将讨论甲状腺激素在射血分数降低和保留的心力衰竭环境中心肌恢复中的作用的实验和临床证据及其未来的治疗意义。
摘要 - 甲状腺结节是一种病变,医生通常需要高级诊断工具来检测和进行后续诊断。有监督的深度学习技术,尤其是生成的对抗网络(GAN),已被用来提取基本特征,检测结节并生成甲状腺面膜。但是,由于识别癌症区域和训练模式崩溃的高成本,这些方法在获得培训数据方面面临重大挑战。因此,本研究提出了一个GAN模型的改进,即用于甲状腺结节分割的像素到像素(Pix2Pix)模型,在该模型中,将发生器与监督损失功能合并,以解决GAN训练期间的不稳定性。该模型使用了具有u-Net体系结构启发的编码码头结构的生成器来产生掩码。该模型的歧视者由多层卷积神经网络(CNN)组成,以比较真实和生成的面具。此外,使用三个损失函数,即二进制跨透明镜丢失,软骰子丢失和jaccard损失,并结合损失gan来稳定GAN模型。基于结果,提出的模型从超声甲状腺结节图像中实现了97%的癌症区域检测准确性,并使用稳定模型对其进行了分割,其发电机损耗函数值为0.5。简而言之,这项研究表明,与半监视分割模型相比,改进的PIX2PIX模型在结节分割精度方面产生了更大的灵活性。关键字 - 甲状腺结节分割,超声图像,深度学习,生成对抗网络,pix2pix,损失功能
灌注梭菌肠毒素(CPE)可用于消除过表达其细胞表面CPE受体的癌细胞 - Claudins的子集(例如CLDN3和CLDN4)。但是,CPE不能靶向仅表达CPE不敏感的Claudins(例如CLDN1和CLDN5)的肿瘤。为了克服这一限制,结构引导的修改被用来结合CPE变体,这些变体可以与CLDN1,CLDN2和/或CLDN5强烈结合,同时保持结合CLDN3和CLDN4的能力。启用(a)靶向最常见的内分泌恶性肿瘤,即CLDN1-Over-over表达甲状腺癌,以及(b)改善针对全球最常见的癌症类型,非小细胞肺癌(NSCLC)最常见的癌症类型,这是由多种Claudins(包括Claudins)高表达Clddn1和Clddn1和Claudins的高度表达。 在甲状腺癌(K1细胞)和NSCLC(PC-9细胞)模型上应用了不同的CPE变体,包括新型突变体CPE-MUT3(S231R/ S313H)。 在体外,CPE-MUT3而不是CPEWT显示出对K1细胞的CLDN1依赖性结合和细胞毒性。 对于PC-9细胞,与CPEWT相比,CPE-MUT3改善了Claudin依赖性细胞毒性靶向。 在体内,具有K1或PC-9肿瘤的异种移植模型中肿瘤内注射CPE-MUT3可诱导坏死,并降低了两种肿瘤类型的生长。 因此,CPE的定向修改可以消除CPEWT无法靶向的肿瘤实体,例如,使用新颖的CPE-MUT3,CLDN1-过表达甲状腺癌。启用(a)靶向最常见的内分泌恶性肿瘤,即CLDN1-Over-over表达甲状腺癌,以及(b)改善针对全球最常见的癌症类型,非小细胞肺癌(NSCLC)最常见的癌症类型,这是由多种Claudins(包括Claudins)高表达Clddn1和Clddn1和Claudins的高度表达。在甲状腺癌(K1细胞)和NSCLC(PC-9细胞)模型上应用了不同的CPE变体,包括新型突变体CPE-MUT3(S231R/ S313H)。在体外,CPE-MUT3而不是CPEWT显示出对K1细胞的CLDN1依赖性结合和细胞毒性。 对于PC-9细胞,与CPEWT相比,CPE-MUT3改善了Claudin依赖性细胞毒性靶向。 在体内,具有K1或PC-9肿瘤的异种移植模型中肿瘤内注射CPE-MUT3可诱导坏死,并降低了两种肿瘤类型的生长。 因此,CPE的定向修改可以消除CPEWT无法靶向的肿瘤实体,例如,使用新颖的CPE-MUT3,CLDN1-过表达甲状腺癌。在体外,CPE-MUT3而不是CPEWT显示出对K1细胞的CLDN1依赖性结合和细胞毒性。对于PC-9细胞,与CPEWT相比,CPE-MUT3改善了Claudin依赖性细胞毒性靶向。在体内,具有K1或PC-9肿瘤的异种移植模型中肿瘤内注射CPE-MUT3可诱导坏死,并降低了两种肿瘤类型的生长。因此,CPE的定向修改可以消除CPEWT无法靶向的肿瘤实体,例如,使用新颖的CPE-MUT3,CLDN1-过表达甲状腺癌。
产气荚膜梭菌肠毒素 (CPE) 可用于消除细胞表面 CPE 受体(一种 claudins 亚群,例如 Cldn3 和 Cldn4)过表达的癌细胞。但是,CPE 无法靶向仅表达 CPE 不敏感 claudins(例如 Cldn1 和 Cldn5)的肿瘤。为了克服这一限制,使用结构引导修饰来生成可以与 Cldn1、Cldn2 和/或 Cldn5 强结合的 CPE 变体,同时保持与 Cldn3 和 Cldn4 结合的能力。这使得 (a) 能够靶向最常见的内分泌恶性肿瘤,即 Cldn1 过表达的甲状腺癌,以及 (b) 能够更好地靶向全球最常见的癌症类型,即非小细胞肺癌 (NSCLC),该类型的特点是高表达几种 claudins,包括 Cldn1 和 Cldn5。不同的 CPE 变体,包括新型突变体 CPE-Mut3 (S231R/S313H),被应用于甲状腺癌 (K1 细胞) 和 NSCLC (PC-9 细胞) 模型。体外实验中,CPE-Mut3 而非 CPEwt 表现出对 K1 细胞的 Cldn1 依赖性结合和细胞毒性。对于 PC-9 细胞,与 CPEwt 相比,CPE-Mut3 改善了紧密连接蛋白依赖性的细胞毒性靶向性。体内实验中,在带有 K1 或 PC-9 肿瘤的异种移植模型中瘤内注射 CPE-Mut3 可诱导坏死并减缓两种肿瘤类型的生长。因此,通过使用新型 CPE-Mut3,定向修饰 CPE 能够消灭 CPEwt 无法靶向的肿瘤实体,例如过表达 Cldn1 的甲状腺癌。
甲状腺激素 (TH) 稳态失调与急性和长期疾病的预后不良有关,但其在糖尿病视网膜病变 (DR) 中的作用尚未被研究过。在这里,我们表征了 db/db 小鼠视网膜中的 TH 系统并强调了 MIO-M1 细胞中的调节过程。在 db/db 视网膜中,DR 的典型功能特征和分子特征与组织限制性的 TH 水平降低相伴而生。还证实了局部低 T3 (LT3S) 状况,这可能是由脱碘酶 3 (DIO3) 上调以及 DIO2 和 TH 受体表达降低引起的。同时,T3 反应基因,包括线粒体标志物和微小 RNA(miR-133-3p、338-3p 和 29c-3p),被下调。在 MIO- M1 细胞中,存在反馈调节回路,其中 miR-133-3p 以 T3 依赖的方式触发 DIO3 的转录后抑制,而高葡萄糖 (HG) 通过核因子红细胞 2 相关因子 2 - 缺氧诱导因子 1 途径导致 DIO3 上调。最后,体外模拟早期 LT3S 和高血糖状态与线粒体功能和应激反应标志物减少相关,而 T3 替代可逆转这一情况。总之,数据表明,在 DR 的早期阶段,DIO3 驱动的 LT3S 可能对视网膜应激有保护作用,而在慢性期,它不仅无法限制 HG 引起的损伤,而且还可能由于持续的线粒体功能障碍而增加细胞脆弱性。
缩写:AE=不良事件,AJ=调整,ALT=丙氨酸氨基转移酶,AST=天冬氨酸氨基转移酶,C=比较器,CHMP=人用药品委员会,CI=置信区间,DTC=分化型甲状腺癌,EMA=欧洲药品管理局,ESMO-MCBS=欧洲肿瘤内科学会-临床获益量表,FDA=食品药品管理局,FM=最终临床获益等级,HCC=肝细胞癌,HR=风险比,I=干预,Int.=意向,ITT=意向治疗,MG=中位增益,n=患者人数,NA=不适用,NE=不可估计,NICE=英国国家健康与临床优化研究所,NR=未达到,OITT=意向治疗客观缓解率,ONJ=颌骨坏死, OS=总生存期,PE=主要终点,PFS=无进展生存期,PM=初步分级,PPE=掌跖红肿感觉异常,QoL=生活质量,RAI=放射性碘,RCC=肾细胞癌,RECIST=实体肿瘤疗效评价标准,RET=转染过程中重排,SAE=严重不良事件,ST=标准治疗,VEGF=血管内皮生长因子
甲状腺功能减退症仍然是一个全球性问题,在成人和新生儿中发病率不断上升,表现为甲状腺分泌甲状腺激素不足导致代谢率下降 [5]。研究表明,甲状腺功能障碍超过十年的患者罹患肝细胞癌的几率显著升高 [6],NASH 和慢性乙型肝炎感染者的甲状腺功能障碍发生率高于对照组 [7]。下丘脑-垂体-甲状腺轴在许多代谢途径中起着重要作用,尤其是那些涉及脂质和碳水化合物的代谢途径。NAFLD 被描述为代谢综合征的肝脏表现。因此,长期以来,甲状腺功能减退症与 NAFLD 之间的关系一直被假设和研究 [8]。
背景:甲状腺激素(Th)是大脑发育和功能所必需的。浸泡9个大脑和脊髓的脑脊液(CSF)含有自由或经甲状腺素(TTR)结合。中枢神经10系统中的紧密甲状腺激素水平调节对于控制神经发生,髓鞘形成和突触发生的发育基因表达至关重要。这一综合的11个功能强调了开发精确和可靠的方法评估CSF中TH水平的重要性。方法:我们报告了12种基于LC-MS的方法,用于测量啮齿动物CSF和血清中的甲状腺激素,适用于新鲜和冷冻样品。13结果:我们发现怀孕大坝与非妊娠成年人以及胚胎与成人CSF的CSF甲状腺激素有着明显的差异。14此外,靶向的LC-MS代谢分析发现了这些人群中CSF中的不同中央碳代谢。结论:相关代谢途径的第15次检测和代谢物分析开放了对CSF甲状腺激素16的严格研究的新途径,并将为正常发育过程中CSF的代谢改变的未来研究提供信息。17 18