病原体。避免对患有活动性严重感染(包括局部感染)的患者使用 CIBINQO。对于患有慢性或复发性感染的患者或居住或旅行过结核病流行区或地方性真菌病流行区的患者,在开始治疗之前应仔细考虑使用 CIBINQO 治疗的风险和益处。在使用 CIBINQO 治疗期间和治疗后,应密切监测患者是否出现感染的体征和症状,包括在开始治疗前潜伏性结核感染检测呈阴性的患者是否可能患上结核病。考虑每年对结核病高度流行地区的患者进行一次筛查。不建议对活动性结核病患者使用 CIBINQO。对于新诊断为潜伏性结核病或之前未治疗的潜伏性结核病患者,或潜伏性结核病检测呈阴性但结核病感染风险高的患者,在开始使用 CIBINQO 之前开始潜伏性结核病的预防性治疗。
使用光吸收纳米颗粒将光能转化为热量是生物医学光热治疗的基本基础。除了生物相容性和靶向感兴趣的组织的能力外,作为光热剂的纳米颗粒的规格还包括在近红外范围内具有强的摩尔吸收系数(生物组织的第一个光学窗口),对吸收能量的热转化为热量,并有效地转移到环境环境中。最后两个规格合并为名为“光到热转化效率”(LHCE)的度量,这是专用于光热治疗1,2的药物的主要定量 - 标准之一。因此,一种可靠的方法来确定光热纳米剂的LHCE是有意义地比较定量不同类型的纳米颗粒的方法。值得注意的是,LHCE可能会随光激发的波长和LHCE的多波长测定而变化,可以指导用于治疗应用的激光的选择。
微粗糙度和低表面能防冰表面因具有超疏水和低冰亲和力而受到研究人员的极大兴趣。然而,通过模板法快速制备未开发微结构的超疏水表面 (SHS) 一直是进一步应用的瓶颈。在这项工作中,将负载石墨烯 (GP) 作为磁性纳米粒子的四氧化三铁 (Fe 3 O 4 ) 引入聚丙烯 (PP) 基质中,作为超疏水防冰/除冰表面的热载体。通过微注射成型和磁引力相结合的方法制备微结构 PP/GP/Fe 3 O 4 表面。使用多物理场耦合模型对具有磁引力的定向粒子迁移进行分析。磁引力使微柱的高度从~85 μ m 增大到~150 μ m,使表面保持较高水接触角(~153 ◦)和稳定的空气腹板,以便液滴以 1 ms-1 的初速度重复撞击。对于发育成熟的微柱,可以通过延长光路来更有效地吸收光以进行多次反射。与纯 PP 表面相比,在强度为 1 kW m-2 的一次太阳辐照下,复合材料表面的光热性能表明,温度在 67 秒内从环境温度升高到 94 ◦ C,而冰粘附强度在同期从~30 降低到~9 kPa。磁性粒子的光热功效可延长 SHS 结冰时间。由于 SHS 对室外注塑件具有出色的被动防冰和主动除冰性能,预计其将有望在制造中实际应用。
最受过临床试验的细胞,间充质基质细胞(MSC)现在已知主要通过包括外泌体的旁分泌分泌发挥其治疗活性。为了减轻对MSC外泌体制备的可伸缩性和可重复性的潜在调节问题,使用高度表征的MYC降低的单克隆细胞系产生MSC外泌体。这些细胞不会在无胸腺裸鼠或表现出与锚固无关的生长中形成肿瘤,并且它们的外泌体不携带MYC蛋白或促进肿瘤生长。与腹膜内注射不同,MSC在IMQ诱导的牛皮癣的小鼠模型中的局部应用减轻了白介素(IL)-17,IL-23和末端组合复合物,C5B9在牛皮乳肌皮中。应用于人类皮肤外植体时,从共价标记的荧光MSC外泌体的荧光渗透并持续在角质层中,大约24小时,而从角质层中忽略不计,将其从角膜层中忽略不计。作为牛皮癣的角膜层的特征在于活化的补充和Munro微鳞片,我们假设局部施用的外泌体渗透到牛皮癣的角膜层以抑制C5B9补体通过CD59抑制CD59,并且这种抑制作用抑制了中性粒细胞粒细胞的IL IL-17。与此相一致,我们证明了C5B9在纯化的人类嗜中性粒细胞诱导的IL-17分泌上的组装,MSC外泌体使这种诱导构成了这种诱导,这又被中和中和的抗CD 59抗体所消除。因此,我们确定了通过局部应用外泌体缓解银屑病IL-17的作用机理。由Elsevier Inc.出版©2023国际细胞和基因治疗学会。这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
针对肿瘤相关抗原的抗体提供了一种将细胞毒性放射性核苷酸优先递送至肿瘤组织原发部位及其转移部位的方法,称为放射疗法或放射免疫疗法。与对放射敏感的正常组织的影响相比,影响放射对肿瘤的有效性的因素取决于抗体的特异性,其他可能影响的因素是肿瘤内靶能量的分布和宿主对注射的外来抗体的反应。人们正在继续研究针对肿瘤上存在的靶向抗原的更多特异性抗体,同时,基因工程的发展也致力于降低特异性抗体的抗原性和减少癌抗原抗体的质量。
抑郁症是一种主要的神经精神疾病,可严重影响个人的社会心理功能和生活质量。神经营养因子现在与抑郁的发病机理有关,而定义的神经营养基础仍然难以捉摸。此外,植物疗法是常规抗抑郁药的替代品,可以最大程度地减少不良反应。因此,高度需要对神经营养因素与抑郁症与植物化学物质之间的相互作用进行进一步研究。这篇综述强调了神经营养因素在抑郁症中的影响,重点是脑源性神经营养因子(BDNF),艾尔比尔细胞线衍生的神经营养因子(GDNF),血管内皮生长因子(VEGF)和NEVER生长因子(NGF)和静态ph剂的各种活动,以及各种活动,神经营养因素。此外,我们为抑郁症的新型诊断和治疗策略提供了未来的机会,并为该领域的挑战提供了解决方案,以加速神经营养因素的临床翻译以治疗抑郁症的治疗。
圣保罗联邦大学(UNIFESP),《人类运动与康复科学的研究生课程》,Avenida ana Costa 95,Santos,SP11060 - 001,巴西B联邦B联邦大学(UNIFESP),UNIFESP),生物学工程系 12231-280, Brazil c Unievangelica, Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Avenida Universit ´ aria Km 3,5, An ´ apolis, GP 75083 – 515, Brazil d Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology, Rua Pedro Ernesto 240, S ˜ ao Jos ´ E DOS Campos,SP 12245 - 520,巴西E巴西大学,生物工程和生物医学工程研究生课程,Rua Carolina Fonseca 235,S〜Ao Paulo,SP 08230 - 030 - 030,巴西,巴西
乳腺癌 (BC) 是全球女性最常见的癌症之一;然而,BC,尤其是三阴性乳腺癌 (TNBC) 的成功治疗仍然是一项重大的临床挑战。最近,光热疗法 (PTT) 已被证明是一种可以克服化疗或手术缺点的新疗法,该疗法涉及在辐射下产生热量以实现 BC 的光热消融,具有微创性和出色的时空选择性。值得注意的是,当将 PTT 与化疗和/或光动力疗法相结合时,可以在原发性和转移性 BC 肿瘤中实现增强的协同治疗效果。因此,本综述讨论了基于纳米技术的光热疗法在治疗 BC 及其转移方面的最新发展,以提供未来 BC 治疗的潜在策略。
摘要:口腔鳞状细胞癌(OSCC)是全球前15大癌症之一。然而,目前OSCC的治疗模式(例如手术、化疗、放疗和联合治疗)存在一些局限性:对邻近健康组织的损害、可能的复发、效率低下以及严重的副作用。在此背景下,基于纳米材料的光热疗法(PTT)引起了广泛的研究关注。本文综述了生物纳米材料在OSCC中用于PTT的最新进展。我们将光热纳米材料分为四类(贵金属纳米材料、碳基纳米材料、金属化合物和有机纳米材料),并详细介绍了每类材料。我们还详细介绍了用于OSCC PTT的药物递送系统,并简要总结了水凝胶、脂质体和胶束的应用。最后,我们指出了PTT纳米材料临床应用面临的挑战和进一步改进的可能性,为未来PTT在OSCC治疗中的研究提供了方向。
光敏剂必须满足以下标准才被认为适用于任何一种光治疗方法:强红光或近红外 (NIR) 吸收,以允许光深度穿透生物组织,暗毒性可忽略不计,副作用少,但在光照下具有高细胞毒性,在生物介质中具有良好的溶解性和稳定性,优先在癌组织中积累,并具有合适的清除率。3 对于 PDT 而言,当考虑更典型的 II 型方法时,光敏剂需要具有高的三线态量子产率 (ΦT) 和随后的高单线态氧量子产率 (ΦΔ),10,11 而对于 PTT,光敏剂必须通过非辐射衰变途径促进有效的光热转换(图 1),以产生足够高的细胞温度升高(例如至 >45°C)来诱导细胞死亡。 12,13 多种类型的纳米材料和分子光敏剂已被用于两种类型的光疗法。14 – 17 虽然纳米材料已被证明是光疗法的有效光敏剂,但其相对有限的可调性、较差的批次间重现性、广泛的尺寸分布、形态依赖性反应和未知的长期生物学效应可能使分子光敏剂成为更具吸引力的解决方案。12,13