广泛的害虫,主要是鳞翅目(毛毛虫),双翅目(蚊子和黑蝇)和鞘翅目(甲虫幼虫)(Sanchis 2011)。bt的特征是在孢子形成过程中生产,内毒素蛋白(称为哭泣的蛋白),这些蛋白会积聚并形成晶体包含体。昆虫必须消耗/摄取这些哭泣的蛋白质,才能感受到其作用,直到昆虫死亡。在摄入后,昆虫中肠内的碱性条件会导致晶体的溶解化,从而将其转化为有毒的核心碎片(Sansinenea 2019)。这些有毒蛋白与位于昆虫中肠上皮细胞上的受体(糖蛋白或糖蛋白)结合(Bravo等人2011)。结合后,毒素会改变其构象,从而使其插入细胞膜并形成阳离子选择通道(Bravo等。2013)。当形成足够的这些通道时,几个阳离子进入了细胞。这会导致细胞内部的渗透不平衡,从而导致中肠上皮完整性的丧失。这使碱性肠道果汁和细菌可以通过中肠地下膜,杀死昆虫。当用作喷雾剂时,这些毒素无效地防止昆虫攻击植物的根或植物的内部部分(Sanahuja等人。2011)。这些局限性引发了人们对开发新的遗传修饰植物和细菌表达哭泣和其他BT-杀虫基因的兴趣,以便提供更有效的毒素递送系统来控制这些昆虫(Azizoglu和Karabörklü2021)。2021; Lazarte等。在生物技术技术(例如基因工程)中的持续进展,具有计算生物学的能力,导致了有关BT的发展和发现。在这种情况下,全球各个研究小组对寻找具有新的抑制活性范围和高水平的毒性毒素的新型哭泣毒素非常感兴趣,这是针对虫害的一种替代品,这种毒性毒性具有更高的抗药性水平(Hou等人 2019; Crickmore等。 2021)。 结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。 2017; Azizoglu等。 2020)。 今天的新一代方法,例如模拟和动态研究,2019; Crickmore等。2021)。结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。2017; Azizoglu等。2020)。今天的新一代方法,例如模拟和动态研究,
有机溶剂提取:玉米,大麦,糙米,玉米胚芽,玉米/大豆粉,玉米/大豆混合物,蒸馏剂干谷物(DDG),蒸馏剂和溶解谷物(DDGS),Hominy,Hominy,Hominy,Millet,Millet,Millet,Oat黄豌豆粉
载脂蛋白E(APOE)分布在各种人体组织中,在脂质代谢中起着至关重要的作用。最近的涉及量已经发现了APOE功能的另一个方面,揭示了其在宿主防御细菌感染中的作用。为了评估APOE3和APOE4的抗菌属性,我们使用铜绿假单胞菌和大肠杆菌进行了抗菌测定。探讨了来自大肠杆菌的ApoE同工型和脂多糖(LPS)之间的相互作用,我们进行了多个实验,包括凝胶移位分析,CD和荧光光谱。此外,通过原子分辨率分子动力学模拟,APOE同工型与LPS之间的相互作用进一步确定。LPS的存在诱导了APOE同工型的聚集,这是通过特定淀粉样蛋白染色以及荧光和电子显微镜确认的现象。通过体外和体内实验研究了APOE3/4同工型的清除作用。总而言之,我们的研究确定,与APOE3相比,APOE同工型与LPS具有与LPS的结合,对APOE4观察到更为明显的APED和复杂形成。此外,我们的数据表明,ApoE同工型通过聚集中和LPS,导致在实验动物模型中减少局部炎症。此外,两种同工型都表现出对铜绿假单胞菌和大肠杆菌生长的抑制作用。这些发现为人体中APOE的多功能性提供了新的见解,尤其是在细菌感染过程中其在先天免疫中的作用。
https://doi.org/10.26434/chemrxiv-2025-qj8f5 orcid:https://orcid.org/0000-0001-9193-9193-9053 consemrxiv note content content contemrxiv contem许可证:CC由4.0
研究了由生物防治剂产生的抗真菌剂绿青霉素与不产生绿青霉素的微生物的生物转化。结果表明,一些环境非目标微生物能够还原已知的植物毒素绿青霉素及其 3-差向异构体中的绿青霉素。因此,这种还原在某些情况下通过解毒机制发生,在植物病害的生物防治中可能对植物造成灾难性的影响。然而,发酵/生物转化工艺可能是制备这种植物毒素的有效方法。
蓝藻是唯一能够进行产氧光合作用的原核生物,是重要的初级生产者,在农业、水生生态和环境保护领域发挥着关键作用。它们多功能的代谢使它们成为各种生物技术应用的有趣候选者。最近,通过基于 CRISPR 的方法的发展,它们的基因操作领域取得了巨大进展。然而,大多数可用的质粒都很难操作,这使得它们的使用具有挑战性。在本研究中,我们使用 CcdB 毒素作为选择标记来改进用于蓝藻基因组编辑的基于 Cpf1 的质粒。我们的结果表明,这种选择提高了质粒构建的成功率,从而提高了基因组编辑的成功率。
简介小麦(面包小麦)(Triticum Aestivum L.)是世界贸易中主要的农产品之一,代表了人类和动物消费的主要要求。它必须满足日益增长的需求,随着世界人口的增加,到2050年达到90亿以上[1],全球小麦的产量每年约为7.15亿吨,在玉米之后的消费中排名第二,在玉米中排名第二(每年10亿吨/每年),霉菌的增长是微生物杂物和储存过程中最常见的货物质量的最常见原因之一,它们可能会增加货物的差异,而货物的差异可能会造成货物的差异,而货物的差异可能会造成货物的差异,而又可能会造成货物的差异,而又可能会造成货物的差异,而又可能会造成货物的差异,而又可能会造成货物的损失,那么它们的差异是造成的,而货物的差异可能会造成货物的差异。感染并增加霉菌毒素的积累[2]。真菌是最重要的生物之一,因为首选酶在细胞之外。有许多研究表明,被称为霉菌毒素的二级代谢产物被认为是砂筒仓颗粒损伤的主要原因,可能导致中毒食物和动物饲料[3]。真菌霉菌毒素通过谷物中的购物中心传递到面粉中心。此过程将将霉菌毒素浓度水平提高到高于可接受的极限。[4],黄曲霉毒素B1是最危险的肾上腺毒素类型之一,被认为是人类和动物的强癌[5],真菌(例如,apergillus spp。,penicillium spp。fusarium spp。)和细菌(例如,沙门氏菌蜡状芽孢杆菌)污染了面粉,它们的产物可能引起许多疾病[6]。
摘要随之而来的转移的肿瘤细胞传播是导致大多数与癌症相关的死亡的原因。癌症疫苗可以通过诱导肿瘤特异性效应T细胞,提供消除转移肿瘤细胞的策略。然而,有效的癌症疫苗的发展中仍然存在几个障碍,包括鉴定辅助物,从而增强了肿瘤特异性T细胞的发展和功效。基于霍乱毒素的佐剂在疫苗中表现出有效性的传染病,但它们在癌症疫苗疗法中的作用仍有待阐明。在这里,我们探索了霍乱毒素A1(CTA1)的佐剂的潜力,以增强抗肿瘤T细胞反应并预防转移。我们报告说,将CTA1融合到金黄色葡萄球菌蛋白A(DD)的佐剂中,对肿瘤相关的抗原TRP2和Twist1的免疫反应增强了小鼠中的免疫反应,从而提供了针对B16F1黑色素瘤和4T1乳腺癌转移的保护。粘膜(鼻内)和全身性(腹膜内)疫苗给药提供了有效的防止静脉注射的肿瘤细胞,鼻内给药可导致在转移性部位的CD4 + T细胞上升。将与CTA1-DD混合的抗原与与基于CTA1的佐剂融合的抗原相结合时,融合构建体引起了最强的免疫原性。尽管如此,通过管理高20倍抗原剂量的混合剂量配方提供有效的转移保护。
摘要简介:环皮二苯甲酸(CPA)是一种由各种真菌物种产生的霉菌毒素,例如曲霉(A. flavus)。这项研究旨在限制和控制烟草抗污染小麦粉的CPA产生水平。材料和方法:从埃及的各个位置收集小麦粉样品(35个样品)。确定并确定真菌污染。维持曲霉的纯菌落并测试了CPA的生产。不同的程序,例如紫外线处理,热处理,材料吸附和乳酸杆菌的生物吸附。用于控制和降低CPA水平。结果:在24个样本中,14个A.黄素分离株(58.33%)能够产生CPA。酵母蔗糖汤是CPA生产最有利的培养基,产生290.6 µg/100 mL干生物量。紫外线对不同暴露时间的CPA的合成产生了影响,暴露60分钟后降低了45.5%。CPA水平随温度和暴露时间的增加而降低,在100°C下最大减少了71.1%,持续30分钟。木炭是最有效的吸附材料,占CPA的53.3%。嗜酸乳杆菌(L. condophilus)是最有效的生物吸附剂,占CPA的96.0%以上。将嗜酸乳杆菌细胞的接种物增加5×107,将CPA水平降低了82.1%。结论:非生物和生物控制措施的多样性及其有效性可能为控制和降低CPA水平提供了新的希望。关键字:曲霉曲霉,环皮二唑酸,乳酸杆菌属,超紫罗兰色引用:Abdelsalam Ayad Ayad A,Fadelsalam Ayad A,Fadel Alsaffar M,Fadel Alsaffar M,Hamza Merza Z,Farouk Z,Farouk Ghaly M.曲霉中含有小麦粉的酸水平。J Appl Biotechnol Rep。 2024; 11(4):1439-1 doi:10.30491/jar.2024.478289.1784
整合子是一种自适应细菌装置,在应激条件下将无启动子的基因盒重新排列成可变的有序阵列,从而采集组合表型多样性。染色体整合子通常携带数百个沉默基因盒,整合酶介导的重组导致 DNA 大量切除和整合,对基因组完整性构成潜在威胁。如何调节和控制这种活动(特别是通过选择压力)以维持如此大的盒阵列尚不清楚。在这里,我们展示了含启动子的毒素-抗毒素 (TA) 盒作为在整体盒切除率过高时杀死细胞的系统的关键作用。这些结果强调了 TA 盒调节盒重组动力学的重要性,并深入了解了细菌基因组中整合子的进化和成功。