科学陈述 我是西班牙国家研究委员会 (CSIC) 的研究教授。1993 年,我毕业于瓦伦西亚理工大学,获得农业工程师学位,并在荷兰莱顿大学获得分子微生物学博士学位,研究项目在荷兰食品研究所 (TNO) 微生物学系进行。我获得了 Ramon y Cajal 奖,并于 2003 年加入瓦伦西亚农业研究所 (西班牙),开发柑橘基因组学的生物信息学工具。2007 年,我加入 CIPF,并于 2010 年成为高级组长,创建了基因表达基因组学实验室。2014 年 8 月至 2021 年 5 月,我是佛罗里达大学微生物学和细胞科学系和遗传学研究所的正教授。2021 年 5 月,我加入 CSIC 综合系统生物学研究所 (I2SysBio),成为佛罗里达大学的兼职教师。 2022 年 1 月,我当选为西班牙皇家工程院院士。我对了解基因表达在基因组水平上的功能方面、跨不同生物体以及与病理过程的关系很感兴趣。我的团队开发了统计方法和软件工具,用于分析转录组的动态方面,将它们与其他类型的分子数据集成并对其进行功能注释,特别关注下一代测序 (NGS) 数据。我是 Blast2GO、Paintomics、maSigPro、NOISeq、Qualimap、SQANTI、tappAS 等流行生物信息学软件的创建者,在全球拥有数万名用户,并率先使用单分子测序技术进行转录组分析。我的研究得到了国家和国际资助机构的大力资助,包括 Horizon Europa、H2020、Marie Curie Actions、NIH、NASA 和 USDA,以及 Santander、JDRF 和 Helmsley 等私人基金会。我领导过多个国际研究联盟项目,包括 STATegra(欧盟第七框架计划,11 个合作伙伴,8 个国家,600 万欧元,用于多组学数据集成)、DEANN(居里夫人行动,16 个合作伙伴,14 个国家,90 万欧元,用于生物信息学科学交流)、LongTREC(居里夫人行动博士网络,12 个合作伙伴,10 个国家,270 万欧元,长读生物信息学工具开发)以及佛罗里达大学的 6 名 PI 团队,旨在开发 1 型糖尿病进展的多组学模型。我(共同)组织过许多生物信息学和 NGS 会议,包括计算生物学领域的主要会议 ISMB,并在五大洲的 10 多个国家开设了专门的生物信息学课程,参加人数超过 500 人。我是 Biobam Bioinformatics 的联合创始人和科学顾问,该公司自 2010 年成立,致力于为生物学家打造生物信息学解决方案。我目前的研究兴趣是开发系统生物学多组学数据整合的统计方法,创建第三代测序数据分析工具,并通过群落建模了解微生物相互作用。
和受影响细胞的转录组(图2a – d)。例如,RNA干扰(RNAI)通过利用序列特异性抑制基因表达来干扰蛋白质翻译,显示出慢性疼痛治疗的希望,并批准了几种基于RNAI的方法在各种非神经疾病疾病条件下用于临床使用16。慢性疼痛疗法的另一种潜在适用方法使用反义寡核苷酸(ASOS),该方法在转录组水平上起作用以干扰mRNA加工,从而导致感兴趣的蛋白质耗尽并抑制其功能17。但是,RNAi和基于ASO的干扰都在效率以及细胞或组织特异性方面都有局限性。18,19。尽管基因递送方法有了重大改进,但针对特定细胞感兴趣的载体(例如患者的主要感觉神经元)仍然是一个挑战,这阻碍了将实验疗法转化为临床用途。基因编辑中赢得诺贝尔奖的发现为各种治疗性干预措施带来了激动的机会,在单个或小组的核酸的水平上进行了操纵以及调节元素,从而提供了调整细胞活性的前景,包括一组细胞的活性,包括一级SORY NEURONS NEURONS NEURONS 20,20,21 21。例如,CRISPR – CAS9系统允许在DNA水平上进行分子修改,并具有主要的转化前景(图2d)。CRISPR干扰的精度优于RNAi和ASO,部分原因是,与靶向mRNA的干扰方法不同,DCAS9可以在转录水平上进行选择性操纵。正在为改善和扩展CRISPR系统的努力,以提高功效和安全性,包括使用基因组或CRISPR干扰系统中使用催化无效的CAS9 CAS9酶(Dead cas9(DCAS9))在基因组或CRIS PR的干扰系统中进行调整,从而抑制转录的转录,而不会改变DNA序列中的DNA序列,而不会改变基因组序列2222。采用了作用于RNA(ADAR)或催化无效的CAS13的腺苷脱氨酶的RNA靶向的更多方法,还允许对RNA进行编辑,从而以更好的安全性23,24产生瞬时和可逆调节蛋白质表达。像DNA编辑的方法一样,具有表观遗传机制操纵的新兴技术显示出临床使用的巨大转化潜力25。包括CRISPR在内的大多数基因治疗系统都依赖于病毒载体对转基因的妄想(表1),这些媒介具有生物不兼容,基因组压力和不需要的抗tar-效果26、27的风险。鉴于这些挑战,已经探索了替代输送系统,包括使用干细胞,功能化脂质体和免疫学中性纳米载体13,28。自定义病毒capsids,并仔细选择了载体中的基因组插入位点,并操纵了Capsids的自动化机制以及合成递送系统的使用,还可以最大程度地减少当前基因治疗方法的不良反应,并增强在包括Thrance Medical Compores(包括Chrance becompies)中,包括Chrmicapies,包括Chronic 11,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29。
有效使用它们的能力(Beckie,2020)。因此,要解决问题并制定可持续有效的杂草管理策略,我们必须了解除草剂耐药性的产生方式。我们知道,杂草可以通过更改除草剂(靶位部位耐药性或TSR)靶向的蛋白质,或避免,修改或排毒除草剂本身(非target位点耐药性或NTSR)来进化除草剂(Gaines等人。2020)。也很明显,这两种机制不是相互排斥的,许多种群都表现出两种类型的抗药性(Comont等人2020)。对于几种杂草物种,我们对TSR具有良好的分子水平理解。研究TSR是被损坏的东西,除草剂的功能被设计为中断的蛋白质是已知的。已经确定了目标蛋白质中突变位点的位置,这些变化的频率以及产生的变化如何改变除草剂和靶标之间的相互作用(在Gaines等人中进行了审查。2020)。这些研究使我们对为什么除草剂不再抑制蛋白质功能有分子级的理解。,但TSR机制并不总是完全解释所有杂草如何生存。这强调了NTSR机械主义和数据的重要性,这表明NTSR非常广泛(Powles&Yu,2010年综述)。ntsr涵盖了允许植物在蛋白质靶标的变化以外的所有方法:包括摄取除草剂分子的摄取,转运和排毒。2018)。为了使未来的杂草管理策略有最佳的工作机会,他们必须考虑NTSR,特别是因为NTSR可以从不同的作用方式赋予对除草剂的抵抗,从而扩展到尚未发明的除草剂。因此,要确定基本的修改,必须考虑所有这些过程中涉及的所有蛋白质。研究人员已经通过各种途径进行了“针中的HAYSTACK”搜索,包括比较对除草剂敏感的蛋白质组和/或转录组与耐除草剂的植物。这种整体方法与损坏的系统进行了比较,在识别可能支持NTSR的潜在基因方面效果很好。但是这些清单很长,很明显,所有耐除草剂群体都不具有单一的通用“分子填充物”(Tétard-Jones等人。因此,这些方法仅揭示了基因型和表型之间的相关性,但不能建立因果关系。如果除草剂耐药性是一台可能导致问题的潜在零件列表的破碎机器,我们将以两种方式处理此列表:要么替换每个零件以查看是否解决了问题,要么在工作机器中打破同一零件,以查看问题是否可以重复。
剪接是去除前 mRNA 片段(称为内含子)同时将片段(称为外显子)连接在一起形成成熟 mRNA 的过程 1 。可变剪接是一种现象,其中基因的不同外显子片段剪接在一起形成具有不同序列的成熟 mRNA,大大扩展了单个基因编码的蛋白质库。可变剪接过程深深嵌入基因调控网络中,并控制 90% 以上的人类基因的基因异构体表达 2 。鉴于其普遍性,RNA 剪接失调与许多疾病有关也就不足为奇了 3 – 5 。RNA 测序是一种强大的工具,可用于“读取”转录组并识别不同细胞类型、条件和疾病中可变剪接的变化 2、5、6。但是,缺乏一种可扩展的工具来精确且可逆地“编写”可变剪接。尽管针对特定基因异构体进行降解的异构体特异性 RNAi 或异构体特异性 cDNA 过表达可用于扰乱异构体水平 7、8,但可能无法保持靶基因的整体表达水平。虽然剪接转换反义寡核苷酸 (ASO) 可有效扰乱剪接,甚至已进入临床试验 9,但它们的成本对于大规模研究而言过高,并且需要筛选许多设计以确定有效的靶序列。此外,由于 ASO 本质上是瞬时的,因此它们不适用于需要稳定或可诱导表达的用例。RNA 调节蛋白与异源 RNA 结合结构域的融合,例如 Pumilio/PUF、MS2 外壳蛋白 (MCP)、PP7 外壳蛋白 (PCP) 和 λ N,已经允许人工调节 RNA 过程 10 – 15。例如,通过工程化的 PUF 结构域将富含丝氨酸或富含甘氨酸的结构域束缚到外显子上,分别诱导它们的包含或排除12。然而,这些人工 RNA 效应分子需要蛋白质工程或在靶 RNA 中插入人工标签,并且依赖于短识别序列,这限制了靶向灵活性和特异性。遗传学和表观遗传学领域极大地受益于基于 RNA 引导的 DNA 靶向 CRISPR-Cas 系统的技术的爆炸式增长 16。我们,以及其他一些人,已经成功地实施了分子工具来修改目标 DNA 位点的遗传序列或表观遗传状态 17-25。CRISPR 介导的 DNA 水平基因编辑方法已被用于扰乱剪接(在剪接位点进行碱基编辑/插入缺失或切除整个外显子)19-21。然而,由于共享同一 DNA 片段的 DNA 顺式调控元件(例如转录因子结合位点)可能受到干扰,因此这些方法可能会产生混淆效应。此外,使用 CRISPR 介导的 DNA 缺失或突变方法很难促进外显子的插入。首次证明了使用 CRISPR 靶向 RNA 的激动人心的前景,即将最常用的 DNA 靶向 SpCas9 转化为 RNA 核酸酶“ RCas9 ”,并添加了 PAMmer - 一种寡核苷酸,当与靶 RNA 结合时,会模拟 SpCas9 结合所需的原型间隔区相邻基序 (PAM) 19 。虽然将 RCas9 靶向重复序列不需要 PAMmer 26 ,但重复序列仅占所有 RNA 顺式调控元件的一小部分。继 RCas9 首次报道之后,其他 CRISPR/Cas9 系统也被发现可在体外与单链 RNA 结合 27 、 28 ,但缺乏它们在哺乳动物细胞中体内 RNA 结合的证据。最近发现了来自细菌 CRISPR 系统的 RNA 引导的 RNA 核酸酶 29 – 31 。它们对哺乳动物细胞的适应不仅允许可编程的 RNA 降解 29、31、32,而且还可用于设计新功能,例如 RNA 序列编辑 30、活细胞 RNA 成像 32 和诊断 33。特别是,CasRx 是从 Ruminococcus flavefaciens 中分离出来的最近鉴定出的 IV-D 型 CRISPR-Cas 核糖核酸酶