RNA 剪接失调是几乎所有肿瘤类型的分子特征。癌症相关的剪接变异既来自复发性突变,也来自控制剪接催化和调节的反式因子表达改变。癌症相关的剪接失调可通过多种机制促进肿瘤发生,导致细胞增殖增加、凋亡减少、迁移和转移潜能增强、化疗耐药和逃避免疫监视。最近的研究已经确定了在癌细胞转化和生长中发挥关键作用的特定癌症相关异构体,并证明了纠正或以其他方式拮抗此类癌症相关 mRNA 异构体的治疗益处。调节或抑制 RNA 剪接的临床级小分子同样已被开发为有前途的抗癌疗法。在这里,我们回顾了癌细胞转录组特有的剪接变异、失调剪接对肿瘤发生和进展的贡献,以及针对剪接进行癌症治疗的现有和新兴方法。最后,我们讨论了将这些发现转化为临床应用必须解决的悬而未决的问题和挑战。
简单总结:草鱼Ctenopharyngodon idellus是我国重要的淡水养殖硬骨鱼类,年产量达5,533,083吨,但由草鱼呼肠孤病毒(GCRV)引起的出血病严重制约了草鱼的养殖。为了更好地控制草鱼出血病,基于抗病毒免疫分子标记的抗性草鱼品系的培育是一种潜在的解决方案。然而,草鱼抗GCRV感染的分子基础仍然很大程度上未知,大大限制了抗出血病草鱼的培育。鉴于三部分基序蛋白(TRIM)在动物抗病毒免疫中的重要性,我们利用隐马尔可夫模型生物序列分析软件(HMMER)和SMART对草鱼基因组中的TRIM进行鉴定,并分析其基因位点、结构和进化特征。我们还尝试基于两组转录组揭示草鱼在GCRV感染过程中的抗病毒TRIM及其介导的免疫过程。本研究为了解草鱼的TRIM和抗病毒免疫提供了信息。
免疫介导的炎症性疾病(IMID)中的精确药物需要对治疗反应有细胞的理解。我们描述了克罗恩氏病(CD)和溃疡性结肠炎(UC)的治疗曲线(抗肿瘤坏死因子(抗TNF)治疗)。我们产生了约100万个单细胞转录组,分为109个细胞状态,来自216个肠道活检(41名受试者),揭示了疾病特异性的差异。系统生物学空间分析确定了CD和干扰素(IFN)反应特征中的肉芽肿特征,该特征位于T细胞聚集体和CD和UC中的上皮损伤。上皮和髓样室的预处理差异与两种疾病的缓解结果有关。纵向比较表明非排放中的疾病进展:CD中的髓样和T细胞扰动,UC中的多细胞IFN信号增加。IFN信号传导在类风湿关节炎(RA)滑膜中也观察到了淋巴样病变。我们的治疗图集是多种炎症性疾病中最常见的生物治疗,抗TNF的扰动最大的细胞普查。
a. 生成药物适应系的实验设计示意图。通过增加药物浓度(从 1 到 320 μM)对 Kuramochi 细胞系进行挑战。标明了具体剂量和治疗持续时间。从代表性显微镜图像(放大 5 倍,比例尺 = 50 μm)显示了细胞形态。b. 适应系的细胞活力显示了 9 天治疗期间对 olaparib 的反应。剂量范围与生成线所用的剂量范围相同。所有数据点均相对于载体处理的对照(针对每个相应的线)进行了标准化,并代表 3 个独立实验(每个实验 6 个技术重复)的平均值及其各自的标准误差线 (sem)。c. 适应细胞系平均转录组之间的 Spearman 相关性。d. 各个系上的 scRNA-seq 数据的 UMAP 表示。颜色和数字表示由 Louvain 聚类确定的亚群。e.根据适应系中 Spearman 等级相关系数对亚群进行聚类。标明了定义的五种主要转录状态。f. 适应系中五种状态下每个群体的细胞频率。图 1e 中显示的亚群聚类结果基于属于特定亚群的细胞分配到各自的状态。
链霉菌Albidoflavus是一种流行且遗传上的平台菌株,用于通过异源生物合成基因簇(BGC)的表达进行自然产物发现和生产。然而,其转录调节网络(TRN)及其对继发代谢的影响尚不清楚。在这里,我们通过将独立的组件分析应用于来自内部和公共资源的218个高质量RNA-SEQ转录组的纲要,通过将独立的组件分析应用于88个独特的增长条件,来表征其TRN。我们获得了78个独立调制的基因集(imodulons),这些基因(imodulons)在定量地描述了跨不同条件的TRN及其活性状态。Through analyses of condition-dependent TRN activity states, we (i) describe how the TRN adapts to different growth conditions, (ii) conduct a cross-species iModulon comparison, uncovering shared features and unique characteristics of the TRN across lineages, (iii) detail the transcriptional activation of several endogenous BGCs, including surugamide, minimycin and paulomycin, and (iv) infer potential functions of 40% albidoflavus基因组中未表征的基因。我们的发现提供了对Albidoflavus的TRN的全面和定量的理解,为进一步的探索和实验验证提供了知识库。
肠道及其菌群(MB-GUT)是人体中细菌的最大吸收器官和储层。MB-GUT被认为是一个单个系统,其相互作用会产生影响整个身体功能的响应。中枢神经系统在所谓的MB甲状脑轴上与MB-GUT连续交叉对话,而MB产物激活的许多羽毛质途径对于大脑的正确发育和生理功能都是必需的。营养不良有助于年龄和年轻人口的许多病理状况。阐明MB脉冲如何影响衰老,阿尔茨海默氏病,多发性硬化症和其他神经退行性病理学的中枢神经系统至关重要。了解MB-GUT,肠系统,免疫细胞,神经元和神经胶质之间的相互作用及其对宿主防御,组织修复和神经变性的影响对于在疾病的分子基础上识别新参与者至关重要。在这方面,有必要遵循多学科的方法扩展到复杂的MB-Gut脑轴的所有地区和组成部分。尤其是,对MB-GUT驱动的变化的分析神经元 - 胃细胞 - 微神经三合会将突出与神经胶质细胞差异募集/激活相关的神经退行性机制,改善对神经元/Glia/Glia/Glia commental和PELUCIATS MB-GUT涉及的分子的了解,可以预防MB-GUT,以预防MB-GUT变化。Liang等。 QPCR分析进一步表明,DHC有效地下调了Alb,PON1和CNR1在结肠中的表达。Liang等。QPCR分析进一步表明,DHC有效地下调了Alb,PON1和CNR1在结肠中的表达。本社论介绍了《国际分子科学杂志》发表的新特刊,题为“行为和脑部疾病中的微生物群 - gut脑轴”,该问题涵盖了这一重要主题,其中包含六项有价值的贡献,即四项原始研究文章和两份评论。[1]研究了血肠citrina baroni(Daylily,DHC)对胃肠道转运,排便参数,短链有机酸,肠道微生物组,转录物和网络药理学的抗综合作用。作者证明,DHC的给药加速了小鼠的排便频率,并提高了一些有益的细菌分类群的丰富度,同时降低了盲肠内容中的病原体水平。转录组分析发现DHC干预后结肠中有700多个差异表达的基因(DEG),这些基因主要参与嗅觉转导途径。转录组学和网络药理学的整合揭示了七个重叠靶标(ALB,DRD2,IGF2,PON1,TSHR,MC2R和NALCN)。这些结果提高了对DHC抗便秘效应的理解,从而提供了新颖的转录组和网络药理学的综合视角。nuccio等。[2]研究了社会隔离对Microtus Ochrogaster(Prairie Vole)中肠道微生物组和代谢组的影响。生理压力导致孤立的女草原田鼠的焦虑和抑郁行为指标与配对的草原田鼠相对。在16S rRNA的水平上进行细菌DNA测序
课程Vitae Audrey T. Lin,D.Phil美国自然历史博物馆200 Central Park West New York,NY 10024-5102美国电子邮件:alin@amnh.org | linat@si.edu orcid ID:https://orcid.org/0000-0000-0003-2505-1480教育2020牛津大学D.Phil Evolutionary Biology/Zoology论文:“下一代测序数据中的转录组和古代DNA的解释模式”。主管:Greger Larson,Tim Coulson,Gkikas Magiorkinis,Aris Katzourakis 2014伦敦大学学院M.Sc.感染与免疫(优异)2012年内华达大学,拉斯维加斯大学。B.S. 生物学,人类学次要专业任命2023 - 2025年Gerstner博士学位学者生物信息学与计算生物学生物学美国自然历史博物馆,纽约,纽约。 顾问:Nancy B. Simmons 2022 - 2023年,乔治·伯奇(George Burch)理论医学博士后研究员和附属人类学理论科学系国家自然历史博物馆,史密森尼学会,华盛顿特区史密森尼学会。 顾问:萨布丽娜·索尔特勒(Sabrina Sholts)洛根·基斯特勒(Logan Kistler)2020 - 2022年,彼得·巴克(Peter Buck),彼得·巴克(Peter Buck Postdoctoral),人类学院士,国家自然历史博物馆,史密森尼学会,华盛顿特区。 顾问:洛根·基斯特勒(Logan Kistler),萨布丽娜(Sabrina)sholts赠款和奖项2021“探索SARS-COV-2的进化起源”,$ 19,282B.S.生物学,人类学次要专业任命2023 - 2025年Gerstner博士学位学者生物信息学与计算生物学生物学美国自然历史博物馆,纽约,纽约。顾问:Nancy B. Simmons 2022 - 2023年,乔治·伯奇(George Burch)理论医学博士后研究员和附属人类学理论科学系国家自然历史博物馆,史密森尼学会,华盛顿特区史密森尼学会。顾问:萨布丽娜·索尔特勒(Sabrina Sholts)洛根·基斯特勒(Logan Kistler)2020 - 2022年,彼得·巴克(Peter Buck),彼得·巴克(Peter Buck Postdoctoral),人类学院士,国家自然历史博物馆,史密森尼学会,华盛顿特区。顾问:洛根·基斯特勒(Logan Kistler),萨布丽娜(Sabrina)sholts赠款和奖项2021“探索SARS-COV-2的进化起源”,$ 19,282
沿海和河口环境处于内源性和外生压力下,危害居住的生物群的生存和多样性。多个(a)生物应激源和Holobiont相互作用的可能协同作用的信息在易北河河口大部分缺失,但对于估计对动物生理学的不可预见的影响至关重要。在这里,我们试图利用宿主转录RNA-seq和Gill Mucus Microbial 16S rRNA MetabarCoding数据,并在网络分析方法中结合了生理和非生物测量方法,以反应多个压力源对少数压力源对少数压力的影响,属于Lar eStuaries的Juevenile Sander Lucioperca。我们发现以g组织特异性转录响应为特征的中鞘区域与渗透传感和组织重塑相匹配。肝动物转录组强调,来自高度浊度区域的Zander经历了受损的身体状况支持的饥饿。潜在的致病细菌,包括Shewanella,acinetobacter,Aeromonas和Chryseobacterium,沿淡水过渡和氧气最小区域占据了吉尔微生物组。它们的发生与宿主ill中强烈的适应性和先天的转录免疫反应相吻合,并增强了肝组织中的能量需求,从而支持其潜在的致病性。总体而言,我们证明了信息从将OMIC数据整合到鱼类生物监测到鱼类的生物监测并指出具有疾病潜力的细菌物种所获得的信息。
摘要:哺乳动物的施肥包括由精子因子磷脂酶C Zeta(PLC F)引发的一系列Ca2Þ。一些研究表明,在受精时改变Ca2Þ振荡状态会影响植入前的胚泡发育。然而,辅助卵母细胞激活(AOA)方案可以以与生理学CA 2 pro填充的方式诱导卵母细胞激活。在我们的研究中,我们使用了新开发的PLC f -null精子来研究AOA对小鼠植入前胚胎发生的独立作用。基于以前的发现,我们假设具有Ca2Þ振荡响应的AOA方案可能会提高胚泡的形成速率和不同的Ca2ÞProfiles可能会改变胚泡的转录组。A total of 326 MII B6D2F1-oocytes were used to describe Ca 2 þ profiles and to compare embryonic development and individual blastocyst transcriptomes between four con- trol conditions: C1 ( in-vivo fertilization), C2 (ICSI control sperm), C3 (parthenogenesis) and C4 (ICSI-PLC f -KO sperm) and four AOA组:AOA1(人类重组PLC F),AOA2(SR2Þ),AOA3(Ionymycin)和AOA4(TPEN)。所有群体在其Ca2Þ方面均显示出显着的变化;但是,对照组(91.1%6 13.8%)和AOA(86.9%6 11.1%)组之间的卵母细胞激活率是可比的。AOA方法可以实现Ca 2 per振荡响应(AOA1:41%和AOA2:75%)或单个Ca2Þ瞬变(AOA3:50%)的瞬态瞬态(AOA3:50%)没有明显不同的胚泡速率(C2:70%)。相比之下,在没有初始Ca2Þ触发器(AOA4)的情况下,我们观察到压实(53%vs. 83%)和胚泡速率(41%vs. 70%)的特征下降。转录pro文件未鉴定ICSI对照组(C2)和四个AOA组之间基因表达水平的显着差异。
摘要:有人提出,成人大脑的功能特征(所有这些都是在生命早期形成的)可能会影响大脑对阿尔茨海默病 (AD) 的易感性。我们之前对衰老加速的 OXYS 大鼠(一种散发性 AD 模型)的研究结果支持这一假设。在这里,为了阐明大脑成熟过程中出现的异常的分子遗传性质,我们分析了 OXYS 大鼠和 Wistar(对照)大鼠在大脑成熟的关键时期(P3 和 P10 岁;P:出生后天数)的前额皮质 (PFC) 和海马的转录组(RNA-seq 数据)。我们在两个大脑结构中发现了 1000 多个差异表达基因;功能分析表明神经元接触形成效率降低,这大概主要是由于线粒体功能缺陷所致。接下来,我们比较了从婴儿期到 AD 样病变进展阶段(共五个年龄段)大鼠 PFC 和海马中差异表达的基因。三种基因( Thoc3 、 Exosc8 和 Smpd4 )在整个生命周期中均在 OXYS 大鼠的两个脑区中表现出过度表达。因此,婴儿期 OXYS 大鼠脑中神经网络形成效率的降低可能是导致其出现 AD 样病变的原因。