基于半导体过渡金属二分法的晶体管可以提供高载体的迁移率,强旋转 - 轨道耦合以及在量子接地状态下固有强的电子相互作用。这使它们非常适合在低温下用于纳米电子产品。然而,在低温温度下与过渡金属二甲基化金属层建立强大的欧姆接触非常困难。因此,无法达到费米水平靠近带边缘的量子极限,从而探测了分数填充的Landau级级别中的电子相关性。在这里我们表明,使用窗户接触技术可以在从Millikelvins到300 K的温度范围内创建与N型钼二硫化物的欧姆接触。我们观察到超过100,000 cm 2 v -1 s -1的场效应,在低温下的传导带中,超过3,000 cm 2 v -1 s -1的量子迁移率超过3,000 cm 2 v -1 s -1。我们还报告了在最低的双层钼二硫化物中,填充4/5和2/5的分数量子厅状态的证据。
本文报道了对具有 STI 结构的硅基分裂栅 n 沟道 LDMOS 晶体管中热载流子引起的退化机制的联合实验和模拟分析。在这种情况下,电子可以获得足够的动能来在硅/氧化物界面处产生带电陷阱,从而引起器件退化并导致器件电参数发生变化。特别地,已经通过实验在室温下表征了线性状态下的导通电阻退化。通过使用旨在重现退化动力学的物理模型,在 TCAD 模拟框架内重现了热载流子退化。研究了不同应力条件下的电子分布函数及其对分裂栅偏压的依赖性,从而定量了解了热电子在被测器件热载流子退化机制中所起的作用。
本研究中使用的石墨烯是一种基于三维碳(3D-C)的纳米结构泡沫状 TIM,具有相对较高的固有热导率(~80 W/mK)。[6] 中介绍了该材料的制备工艺和物理特性,以镍泡沫为模板来生长 GF,在环境压力下通过在 1,000 °C 下分解 CH4 将碳引入其中,然后在镍泡沫表面沉淀石墨烯薄膜。由于热膨胀系数的差异,石墨烯薄膜上形成了波纹和皱纹。在用热 HCl 溶液蚀刻掉镍结构之前,在石墨烯薄膜表面沉积一层薄薄的聚甲基丙烯酸甲酯 (PMMA),作为支撑,以防止石墨烯网络在此过程中坍塌。随后用热丙酮小心地去除PMMA层,即可得到连续、相互连接的石墨烯三维网络整体。
Yazan Barazi,Nicolas C. Rouger,FrédéricRichardeau。I G集成与V GS衍生方法的比较,用于用于宽带隙功率晶体管的快速短路2D诊断。模拟中的数学和计算机,2020,10.1016/j.matcom.2020.05.011。hal-02972905
全栅环栅 (GAA) 是一种最佳器件配置,它能静电控制沟道长度最窄的晶体管 2,并最大限度地减少器件关断时的漏电流,从而使器件在每次切换时耗散更少。GAA 几何形状有多种可能,并且已经在水平 3 或垂直配置中得到验证。4 – 7 尽管技术解决方案有望最终将晶体管的栅极长度 L g 缩小到几纳米 5,但从一维(长栅极或大宽度)到全尺寸缩放的晶体管的转变对器件操作的影响仍有许多悬而未决的问题。其中,应明确解决所制造器件的质量和可能导致晶体管操作不良或电性能分散的波动源,以提出最终集成的解决方案。但是,经典的表征技术(如迁移率提取)不足以提供有关最终缩放时器件质量的信息,因为迁移率可能会在如此小的栅极长度下崩溃。 8 – 11 低频噪声可以成为一种非常精确的技术,用于表征低噪声纳米器件中的电子传输。12 , 13
宾夕法尼亚州立大学 (PSU) 的研究人员在阿克利工程科学与力学教授 Saptarshi Das 博士的带领下,开发出了基于二维材料的高性能 p 型场效应晶体管 (FET)。这些晶体管是在《自然电子学》杂志上发表的一篇论文中介绍的,是通过一种制造策略创建的,该策略利用了两种二维材料(即二硒化钼 (MoSe 2 ) 和二硒化钨 (WSe 2 ))的掺杂和厚度控制。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 — 为了更好地预测功率转换器中晶体管的高频开关操作,必须准确评估这些器件的接入元件,如电阻和电感。本文报告了使用 S 参数对氮化镓 (GaN) 封装功率晶体管进行特性分析,以提取源自欧姆接触和封装的寄生效应。在封装晶体管时,使用在 FR4 印刷电路板 (PCB) 上设计的特定测试夹具设置校准技术,以便从测量的参数中获取晶体管平面中的 S 参数。所提出的方法基于改进的“冷 FET”技术和关断状态测量。它应用于市售的增强型 GaN HEMT(高电子迁移率晶体管)。将提取的寄生元件与器件制造商提供的参考值进行比较。还评估了结温对漏极和源极电阻的影响。最后,提出了这些寄生效应的电热模型。
9 美国佛罗里达州奥兰多市中佛罗里达大学物理系 32816 摘要 量子信息科学 (QIS) 的应用通常依赖于量子比特的生成和操纵。尽管如此,仍有一些方法可以设想一种具有连续读出但没有纠缠态的设备。这个简明的观点包括对量子比特的替代方案的讨论,即固态版本的马赫-曾德尔干涉仪,其中局部矩和自旋极化取代了光极化。在此背景下,我们对决定涉及具有大磁各向异性的分子系统的量子信息过程的基本工作原理的数学原理提供了一些见解。基于此类系统的晶体管使得制造不需要纠缠态的逻辑门成为可能。此外,存在一些值得考虑的新方法来解决与量子设备的可扩展性有关的问题,但面临着寻找适合所需功能的材料的挑战,这些材料类似于 QIS 设备所寻求的功能。
本文首先对开关配置中的 MOS 器件进行了深入研究。然后分析了改进的开关架构,以便更好地将它们集成到复杂的应用中 [4-8]。强调了使用串行接口进行数字控制的模拟开关的优势。具体来说,我们专注于由数字控制块启用或禁用的多通道开关的设计。展示了为实现而设计的内部结构、主要电气参数和布局。这些架构的验证是通过数字和晶体管级模拟、静态时间分析和噪声研究完成的。我们将在一个 8 通道系统上介绍当前的结果,该系统的工作频率从 2.5 MHz [6] 增加到 55 MHz 时钟信号,与逻辑电平的偏差很小 [7]。