合成生物学领域的主要目标是开发能够通过激活治疗相关的细胞功能来响应用户定义的输入的工具。响应外部刺激的基因转录和调控是正在探索的这些细胞功能中最强大和用途最广泛的功能之一。受嵌合抗原受体 (CAR) T 细胞疗法成功的推动,基于跨膜受体的平台因其感知细胞外配体并随后激活细胞内信号转导的能力而受到欢迎。跨膜受体与转录激活平台的整合尚未发挥其全部潜力。质粒 DNA 的瞬时表达通常用于体外探索基因调控平台。然而,能够靶向治疗相关的内源性或稳定整合基因的应用更具临床意义。基因调控可能允许工程细胞进入感兴趣的组织并将功能性蛋白质分泌到细胞外空间或分化为功能性细胞。调节转录的跨膜受体有可能在包括癌症治疗和再生医学在内的众多应用中彻底改变细胞疗法。在这篇综述中,我们将研究当前控制哺乳动物细胞转录的工程方法,重点关注可以响应细胞外信号选择性激活的系统。我们还将推测这些技术的潜在治疗应用,并研究有希望扩展其功能并加强对细胞疗法中基因调控的控制的方法。
类似于CKLF的奇迹跨膜结构蛋白6和编程细胞死亡配体1作为上层尿路上皮癌的预后生物标志物的差异表达。国际分子科学杂志,2024,25,3492。
描述:CD243(MDR-1)属于ATP结合盒(ABC)转运蛋白家族。近似分子质量为170 kd,由两个同源的一半组成。每个一半包含两个疏水跨膜结构域(TMD)和两个亲水核苷酸结合结构域(NBD)。TMD跨越了膜六次,形成了一个具有12个跨膜α-螺旋结构的腔室。nbds通过ATP耦合和水解驱动传输过程,位于膜的细胞质面上。CD243将各种分子跨细胞膜传输,并参与多药耐药性。MDR-1在造血干细胞,T细胞,B细胞和NK细胞以及许多抗多药抗性肿瘤细胞上表达。CD243与小窝蛋白,环手指蛋白1B,AAP1,P53,孤儿核受体PX和细胞色素P450相互作用。
摘要:小有机和无机分子的跨膜转运是细胞代谢的拐角之一。在跨膜转运蛋白中,溶质载体(SLC)蛋白构成最大的,尽管非常多样化,超家族有400多个成员。在异源生物可以直接与SLC相互作用的情况下很早就认识到,这种相互作用可以从根本上确定其效率,包括生物利用度和互动分布。除了公认的前药策略外,转运蛋白底物与各种化学成分的纳米颗粒的化学连接最近已被用作增强其靶向和吸收的一种手段。在这篇综述中,我们总结了与特定SLC转运蛋白相互作用的药物设计方面的努力,以优化其治疗作用。此外,我们描述了当前和未来的挑战以及针对SLC转运蛋白的治疗剂的高级开发的新方向。
成纤维细胞生长因子(FGF)受体3(FGFR3)是跨膜受体高度保守的FGFR家族的成员。9-11有四个FGF受体FGFR1-4,每个FGFR1-4由细胞外配体结合结构域,跨膜结构域和一个细胞内酪氨酸激酶结构域组成。10,11受体二聚化在细胞外结构域与FGF配体系列的高亲和力成员结合后,导致细胞内结构域和磷脂酶Cγ,PI3K-AKT,RAS-MAPK-ERK,RAS-MAPK-ERK和STAT PARHWOWEN PATHERACH ENTERATION,在几种过程中扮演重要角色和发展的角色,导致磷酸化。9,11,12 FGFR3畸变作用在肿瘤类型的肿瘤中起作用,已在15%至20%的晚期尿路上皮膀胱癌中被鉴定出来,约15%的子宫癌(子宫癌)在其他固体肿瘤恶性肿瘤中的子宫内膜癌的约5%,较少的频率(<5%)。10,11,13,14激活的FGFR3改变是多种多样的,包括点突变,融合,扩增和过表达。9-12 FGFR3的失调促进了肿瘤生成和肿瘤细胞的增殖,迁移和存活。9-12,15
摘要 为了触发配子融合,精子需要激活分子机制,其中精子 IZUMO1 和卵母细胞 JUNO(IZUMO1R)相互作用在哺乳动物中起着至关重要的作用。尽管最近已经确定了一组参与此过程的因子,但尚未报道在脊椎动物和无脊椎动物中都能发挥作用的共同因子。在这里,我们首先证明进化保守的因子树突状细胞表达的七个跨膜蛋白结构域 1(DCST1)和树突状细胞表达的七个跨膜蛋白结构域 2(DCST2)对小鼠的精子-卵子融合至关重要,这已通过基因破坏和互补实验得到证实。我们还发现另一个与配子融合相关的精子因子 SPACA6 的蛋白质稳定性受到 DCST1/2 和 IZUMO1 的不同调节。因此,我们认为精子通过整合各种分子途径来确保哺乳动物的正常受精,其中包括经过近十亿年进化而形成的进化保守的系统。
Idecabtagene viclecuel 是一种在研的、针对 B 细胞成熟抗原 (BCMA) 的转基因自体嵌合抗原受体 (CAR) T 细胞免疫疗法,预计将用于治疗复发或难治 (RR) 多发性骨髓瘤 (MM) (RRMM) 成年患者,这些患者既往接受过至少三种疗法,包括免疫调节剂、蛋白酶体抑制剂 (PI) 和抗 CD38 抗体(例如,三类暴露)。idecabtagene vicleucel CAR 由鼠胞外单链可变片段 (scFv)-BCMA 靶向结构域、CD8 阿尔法 (α) 铰链和跨膜结构域、CD3-zeta (ζ) T 细胞活化结构域和 4-1BB (CD137) 共刺激结构域组成。这种结构是 idecabtagene vicleucel 所独有的;没有其他 CAR T 细胞疗法由这些靶向、铰链和跨膜、激活和共刺激结构域的组合组成。单剂量 idecabtagene vicleucel 含有 150 至 540 x 10 6 个 CAR+ T 细胞的细胞悬浮液,目标剂量为 450 × 10 6 个 CAR+ 活 T 细胞。
实现细胞内无载体货物输送的一种方法是通过施加强脉冲电场使细胞膜瞬时通透。施加电场时,立即产生的效应是在细胞膜上感应出跨膜电压(见词汇表)[1]。如果跨膜电压足够强,细胞膜就会暂时通透,从而允许外源货物进入细胞(图 1 A)。在文献中,术语“电穿孔”和“电通透”经常互换使用,以描述这一物理输送过程。在此过程中感应出的跨膜电压强度可导致细胞不可逆或可逆通透。当旨在输送可诱导细胞功能变化的分子(例如瞬时基因表达或基因组编辑)时,可逆细胞通透是首选。在整个评论中,我们使用术语电转移来描述通过应用电脉冲跨细胞膜(细胞外到细胞内,或反之亦然)的分子转移。
Janus激酶(JAK)蛋白是酪氨酸激酶蛋白,与信号换能器和转录(Stat)蛋白的激活剂一起形成JAK STAT途径。Jak家族有四个成员:JAK1,JAK2,JAK3和TYK2; STAT家族有7个成员。JAK蛋白位于跨膜蛋白的细胞内部分作为同型或异二聚体。当信号分子附着在跨膜蛋白上时,它会随着JAK分子的磷酸化而经历结构变化。这些JAK分子然后形成了统计蛋白的对接位点。stat蛋白然后经历磷酸化,转移到细胞核并调节基因转录。1 JAK途径失调与各种自身免疫性疾病有关。jak抑制剂(Jaki)是小分子,由于其在免疫发作中的选择性作用,其作用很广。这些分子可作为口服或局部药物提供,增加了它们的可接受性和便利性。jaki已获得FDA的批准,用于治疗特应性皮炎(口服abrocitinib,口服upadacitinib和局部ruxolitinib),脱发
