摘要:基于 RNA 干扰 (RNAi) 和反义寡核苷酸 (ASO) 的新型靶向疗法的发展正在呈指数级增长,通过以序列依赖的方式选择性地靶向 RNA 来治疗遗传病和癌症,这给治疗带来了挑战。多种疗法正在形成,可以通过沉默 RNA 来去除缺陷蛋白质(例如,Inclisiran 靶向蛋白质 PCSK9 的 mRNA,延长杂合家族性高胆固醇血症中 LDL 受体的半衰期),通过阻止 mRNA 翻译(即,Fomivirsen 结合 UL123-RNA 并阻止 CMV-视网膜炎中翻译成 IE2 蛋白),或通过重新激活修饰的功能性蛋白质(例如,Eteplirsen 能够通过跳过杜氏肌营养不良症中的外显子 51 来恢复功能较短的肌营养不良蛋白)或功能性不强的蛋白质。在最后一种情况下,使用 ASO 可以通过调节特定前 RNA 的剪接(例如,Nusinersen 作用于通常不表达的 SMN2 mRNA 中外显子 7 的剪接;它用于脊髓性肌萎缩)或通过下调转录水平(例如,Inotersen 作用于转甲状腺素 mRNA 以降低其表达;它用于治疗遗传性转甲状腺素淀粉样变性)来改变特定蛋白质的表达,以恢复生化/生理状况并改善生活质量。在精准医疗时代,最近,一种实验性的剪接调节反义寡核苷酸 Milasen 被设计并用于治疗一名 8 岁女孩,该女孩患有一种罕见、致命、进行性的神经退行性疾病,导致其在青春期死亡。在本综述中,我们总结了迄今为止主要政府监管机构批准用于治疗遗传疾病的主要转录治疗药物以及近期针对治疗癌症的临床试验。主要讨论了它们的作用机制、化学结构、给药和生物医学性能。
卫生与公众服务部 公共卫生服务部 食品药品管理局 药物评估和研究中心 ________________________________________________________________ 日期:2022 年 5 月 31 日 来自:Lois M. Freed 博士 药理学/毒理学-神经科学部主任 神经科学办公室 主题:NDA 215515 (Amvuttra, vutrisiran) ________________________________________________________________ Alnylam Pharmaceuticals 于 2021 年 4 月 14 日提交了 NDA 215515,用于治疗成人遗传性转甲状腺素蛋白介导的淀粉样变性多发性神经病。推荐的给药方案为每 3 个月 25 毫克(Q3M),在人类中血浆 C max 和 AUC 分别为 0.12 µ g/mL 和 0.80 µ g*hr/mL。为支持 NDA 批准而提交的非临床研究与临床开发期间部门提供的建议和反馈一致。Hawver 博士审查了非临床数据(药理学/毒理学 NDA 审查和评估,NDA 215515,David B. Hawver,博士,2022 年 3 月 2 日)。Hawver 博士得出结论,非临床数据足以支持 NDA 的批准,其中 2 年小鼠和大鼠致癌性研究是上市后要求 (PMR)。Vutrisiran 是一种 21 核苷酸 siRNA-GalNAc 结合物,靶向突变型和野生型 (WT) 转甲状腺素蛋白 (TTR) mRNA。在输送到肝脏并掺入 RNA 诱导的沉默复合物 (RISC) 后,vutrisiran 会导致 TTR mRNA 敲低,随后突变型和 WT TTR 蛋白的形成减少。人类和食蟹猴的 TTR mRNA 结合区完全同源,但啮齿动物(小鼠、大鼠)或兔子的 TTR mRNA 结合区不完全同源。因此,vutrisiran 仅在猴子中具有药理活性。在符合 GLP 标准的 Sprague Dawley (SD) 大鼠(13 周,6 个月)和食蟹猴(13 周,9 个月)的皮下 (SC) 毒性研究中测试了 vutrisiran 的一般毒性。
摘要基于RNA的疗法在过去十年中迅速出现,提供了一种与常规药物有很大不同的新药物。可以对这些疗法进行编程以靶向或恢复有缺陷的基因,从而获得更多个性化的治疗方法并减少副作用。值得注意的是,RNA疗法在遗传肝病的治疗方面取得了重大进展,以小型干扰RNA治疗的遗传性透甲状腺蛋白淀粉样变性为例,这些淀粉样蛋白淀粉样蛋白使用肝脏靶向策略,例如Galnac共轭以提高疗效和安全性。基于RNA的基因编辑技术,例如基本编辑器和Prime Editor,定期散布了短暂的短篇小学重复系统,也表现出了希望最小化基因组重排和癌症风险的能力。虽然RNA疗法具有很高的精度,但仍在优化交付方法和确保长期安全性和功效方面仍然存在挑战。脂质纳米颗粒-MRNA疗法,尤其是在罕见疾病中蛋白质的替代品,已从临床前的成功中获得了支持。与病毒基因疗法相比,mRNA疗法具有更安全的特征,其基因组整合和致癌基因激活的风险降低。然而,临床试验,尤其是对于罕见疾病,面临限制,例如小样本量和短期观察期。进一步的临床前研究,包括非人类灵长类动物,对于精炼试验设计至关重要。尽管具有潜力,但RNA疗法的高成本构成了一个挑战,需要成本与私密模型来指导定价和可及性。在这里,我们讨论了基于RNA的疗法的基本方面,并展示了遗传肝脏代谢疾病中最相关的临床前和临床发展。
本演示文稿包含Intellia Therapeutics,Inc。(“ Intellia”,“我们”或“我们的”)的“前瞻性陈述”,这是1995年《私人证券诉讼改革法》的含义。这些前瞻性陈述包括但不限于有关Intellia关于Intellia的信念和期望的明示或暗示陈述:我们建立基因编辑和分娩能力的能力,以开发广泛的基因编辑疗法渠道;我们的临床计划的安全性,功效和进步,包括NTLA-2001用于治疗转卫蛋白(“ attr”)淀粉样变性和NTLA-2002,用于治疗遗传性血管性水肿(“ HAE”),根据我们的临床试验申请(“ CTA”)(“ CTA”)和新的药物(包括新药),并包括“ IND NEWS”(包括),并包括“ IND”(包括”(包括),包括“独立”(包括),并将其定为“”(包括),并将其定为“”(包括”临床试验的启动和完成,包括在2024年启动HAE的NTLA-2002阶段临床试验;在未来几年内执行其战略优先事项,包括开发新的交付工具/方法,以将基于CRISPR的编辑带到肝脏以外的组织,验证CRISPR在提供细胞疗法方面的实用性,该疗法可能会对现有疗法具有疗效和安全优势;生成数据启动临床试验的能力;我们的CRISPR/CAS9技术及相关技术的进步,扩展和加速,包括DNA写作,基础编辑,制造和交付技术,以促进和开发其他候选者和治疗;我们在临床前研究中证明平台模块化并复制或应用结果的能力,包括其NTLA-2001和NTLA-2002计划中的计划,包括未来的研究,包括人类的临床试验;以及我们优化合作对开发计划的影响的能力。
本新闻稿包含《1995 年私人证券诉讼改革法》所定义的 Intellia Therapeutics, Inc.(“Intellia”或“公司”)的“前瞻性陈述”。这些前瞻性陈述包括但不限于关于 Intellia 以下信念和期望的明示或暗示的陈述:计划于 2020 年中期提交 NTLA-2001 的试验性新药(“IND”)申请或类似的临床试验申请,用于治疗转甲状腺素蛋白淀粉样变性(“ATTR”),并计划于 2020 年下半年对首批患者进行给药;计划于 2021 年上半年提交 NTLA-5001 的 IND 申请,这是其首个 T 细胞受体(“TCR”)导向的工程细胞疗法开发候选药物,用于其急性髓细胞白血病(“AML”)项目;计划在 2021 年下半年为其遗传性血管性水肿(“HAE”)项目提交 IND 或类似的临床试验申请;计划推进和完成临床前研究,包括其 ATTR 项目和 HAE 项目的非人类灵长类动物研究,以及支持其他体内和离体项目的其他动物研究;开发专有的 LNP/AAV 混合递送系统及其模块化平台,以推进其复杂的基因组编辑能力,例如基因插入;在即将召开的科学会议上展示更多数据以及 2020 年的其他临床前数据;改进和扩展其 CRISPR/Cas9 技术以开发人类治疗产品,以及维护和扩展其相关知识产权组合的能力;展示其平台的模块化并复制或应用临床前研究(包括其 ATTR、AML 和 HAE 项目)中取得的成果的能力,包括在任何未来研究(包括人体临床试验)中;使用 CRISPR/Cas9 技术开发其他所有类型的体内或体外细胞疗法的能力,尤其是针对 AML 中的 WT1 的疗法;优化其合作对其开发计划的影响的能力,包括但不限于与 Novartis 或 Regeneron Pharmaceuticals, Inc. 的合作,以及 Regeneron 为 HAE 计划达成共同开发和共同推广协议的能力;关于其开发计划的监管备案时间的声明。
本新闻稿包含《1995 年私人证券诉讼改革法》所定义的 Intellia Therapeutics, Inc.(“Intellia”或“公司”)的“前瞻性陈述”。这些前瞻性陈述包括但不限于关于 Intellia 以下信念和期望的明示或暗示的陈述:计划于 2020 年中期提交 NTLA-2001 的试验性新药(“IND”)申请或类似的临床试验申请,用于治疗转甲状腺素蛋白淀粉样变性(“ATTR”),并计划于 2020 年下半年对首批患者进行给药;计划于 2021 年上半年提交 NTLA-5001 的 IND 申请,这是其首个 T 细胞受体(“TCR”)导向的工程细胞疗法开发候选药物,用于其急性髓细胞白血病(“AML”)项目;计划在 2021 年下半年为其遗传性血管性水肿(“HAE”)项目提交 IND 或类似的临床试验申请;计划推进和完成临床前研究,包括其 ATTR 项目和 HAE 项目的非人类灵长类动物研究,以及支持其他体内和离体项目的其他动物研究;开发专有的 LNP/AAV 混合递送系统及其模块化平台,以推进其复杂的基因组编辑能力,例如基因插入;在即将召开的科学会议上展示更多数据以及 2020 年的其他临床前数据;改进和扩展其 CRISPR/Cas9 技术以开发人类治疗产品,以及维护和扩展其相关知识产权组合的能力;展示其平台的模块化并复制或应用临床前研究(包括其 ATTR、AML 和 HAE 项目)中取得的成果的能力,包括在任何未来研究(包括人体临床试验)中;使用 CRISPR/Cas9 技术开发其他所有类型的体内或体外细胞疗法的能力,尤其是针对 AML 中的 WT1 的疗法;优化其合作对其开发计划的影响的能力,包括但不限于与 Novartis 或 Regeneron Pharmaceuticals, Inc. 的合作,以及 Regeneron 为 HAE 计划达成共同开发和共同推广协议的能力;关于其开发计划的监管备案时间的声明。
经甲状腺素蛋白心脏淀粉样变性(ATTA)越来越被认为是老年患者心力衰竭的原因,经常使用99m TC-磷酸盐成像来建立诊断。SPECT图像的视觉解释是解释的黄金标准,但本质上是主观的。Spent心肌的手动定量99M TC-Pyrophos-Phate活性是时必的,并且在临床上没有进行。我们通过使用CT衰减图的核心研究分割对99m TC-磷酸盐的全自动实力定量进行了深度学习方法。方法:包括接受SPECT/CT 99M TC-Pyrophophathate成像的患者进行可疑的ATT CA。使用标准标准确定了ATTA CA的诊断。心脏室和心肌,然后应用于衰减校正的SPECT图像以量化放射性抗体活性。使用接收器操作特征曲线(AUC)下的区域(AUC),我们评估了目标与背景比(TBR),心脏焦磷酸盐活性(CPA)(CPA)(CPA)的诊断准确性(CPA)。然后,我们评估了与心血管死亡或心力衰竭住院的综合结果的关联。结果:总共包括299名患者(中位年龄为76岁),在83名(27.8%)患者中诊断出ATTA CA。CPA(AUC,0.989; 95%CI,0.974 - 1.00)和VOI(AUC,0.988; 95%CI,0.973 - 1.00)的预测性能最高。下一个最高的AUC是TBR(AUC,0.979; 95%CI,0.964 - 0.995)。CPA的AUC显着高于心与互机比率(AUC,0.975; 95%CI,0.952 - 0.998; P 5 0.046)。23例ATT CA患者经历了心血管死亡或心力衰竭的医院。所有用于建立TBR,CPA和VOI的方法都与调整年龄调整后发生事件的风险增加,危险比每SD增加1.41至1.84。结论:核心副群体衰减图的深度学习分割不受放射性示意剂吸收模式的影响,并且可以完全自动量化热点频谱成像,例如99m tc- pyrophophophate。这种方法可用于准确识别患有ATT的患者,并可能在风险预测中发挥作用。
本演示文稿包含 Intellia Therapeutics, Inc.(“Intellia”、“我们”或“我们的”)根据 1995 年私人证券诉讼改革法做出的“前瞻性陈述”。这些前瞻性陈述包括但不限于关于 Intellia 推进和扩展 CRISPR/Cas9 技术以开发人类治疗产品的能力以及我们的 CRISPR/Cas9 知识产权组合的明示或暗示的陈述;我们实现稳定或有效的基因组编辑的能力;我们有效管理一剂或多剂 CRISPR/Cas9 候选产品的能力;我们临床前研究的潜在时机和进展,包括针对我们的转甲状腺素蛋白淀粉样变性(“ATTR”)项目(“NTLA-2001”)、遗传性血管性水肿(“HAE”)继续进行的非人类灵长类动物研究,以及我们其他项目的其他研究,包括临床前和人体临床试验;里程碑事件的时机和可能实现,以推进我们产品线的进展,包括开发候选药物的选择、启动新药临床试验(“IND”)支持研究和提交 IND;我们能否成功开展 NTLA-2001 的 IND 支持研究,并随后在 2020 年中期提交 IND 申请;我们能否展示我们平台的模块化,并在未来任何研究(包括人体临床试验)中复制或应用我们在临床前研究(包括 ATTR 和 HAE 计划或研究项目)中取得的成果;我们能否在临床前或临床研究中生成数据并复制与我们专有的脂质纳米颗粒(“LNP”)技术(包括其配方和成分)的增强相关的结果,或任何增强将导致产品候选概况的改进;我们专有的 LNP-腺相关病毒(“AAV”)混合递送系统的潜在开发,以推进我们复杂的基因组编辑能力;其他所有类型的体内或离体细胞疗法的潜在开发;我们计划在 2020 年上半年为我们的 HAE 项目提名一名开发候选人;我们对每个项目可能针对的潜在患者群体的预期;我们的许可人或我们从中获得权利的其他方以及第三方和竞争对手的知识产权地位和战略;政府机构的行动;我们作为一家公司的成长以及我们董事会成员和高管对我们的运营和进步的预期贡献;我们的合作对我们的研发项目的影响;有关我们开发项目的监管备案的潜在时间;我们候选产品的潜在商业化机会,包括价值和市场;我们对 2020 年资本使用和其他财务结果的预期;以及到 2021 年底的运营资金能力。
基因组编辑工具的出现,例如CRISPR-CAS9,已使遗传和基于细胞的疗法的发展用于治疗遗传疾病(Porteus,2019年)。进行了多项临床试验,以测试自体基因编辑的造血干细胞(HSC)的安全性治疗遗传疾病(NCT03655678,NCT04208529,NCT0485576肝脏的编辑以治疗经性淀粉样变性(ATTR,NCT04601051)或遗传血管性水肿(HAE,NCT05120830)(Frangoul等,2021; Gillmore等,2021)。值得注意的是,目前大多数开放临床试验都集中在基因敲除(KO)而不是同源性基因修复上。KO不需要同时递送同源序列来纠正引起疾病的突变,因此通常与较高的成功编辑效率有关。由于我们已经广泛的知识和骨髓中HSC移植的既定程序(Consiglieri等,2022)以及脂质纳米颗粒技术的可用性,因此这些示例的可行性得到了加速,并有效地靶向了肝脏(QIU等,20221)。Unfortunately, such techniques and technologies are not available for targeting the lung speci fi cally, therefore, expanding the use of genome editing tools to treat other inherited disorders, such as cystic fi brosis (CF), primary ciliary dyskinesia (PCD) and surfactant protein disorders impacting the lungs is of signi fi cant interest.图1总结了这些研究的发现。CF是由CF跨膜电导调节剂(CFTR)基因突变引起的。在这些情况下,体内基因组编辑受到挑战的限制,其中1)将基因组编辑试剂递送到所需的细胞中,基因校正所需的同源重组需要CRISPR-CAS9和CRISPR-CAS9和同源DNA才能将其传递到同一细胞中,以及2)对理想细胞/干细胞的长期疾病矫正的理解。EX-VIVO基因编辑可能是一种更有效的方法,但是基因编辑的细胞和调理方案的递送,使上皮接受细胞的植入而没有损害患者的肺功能,但仍表现出重要的挑战。在本研究主题中,我们提供了四篇文章,描述了产生自体基因校正的气道基底细胞(BCS),移植气道BC的努力,并讨论了扩展这些工具以治疗影响肺泡的表面活性剂蛋白质疾病的潜力。一个主要挑战是气道干细胞的有效基因校正,同时保持其再生潜力。许多基因校正工作都集中在CF上,因为它是影响肺部最有特征的遗传疾病之一(Suzuki等,2020; Vaidyanathan等,2020)。在CFTR中已经描述了2000多种不同的突变,因此,人们对替换整个CFTR编码序列的兴趣引起了极大的兴趣,以开发适用于所有CF患者的治疗。但是,CFTR编码序列(4,500 bp)接近常用腺相关病毒的包装极限
致编辑:近年来,由于有效疗法的验证,淀粉样转甲状腺素蛋白相关 (ATTR) 心脏淀粉样变性 (CA) 患者的治疗发生了重大变化。例如,使用 N1006 等抗体的新疗法有望消除 ATTR CA ( 1 ),基因编辑策略有望降低遗传性疾病患者血清 TTR 蛋白水平 ( 2 )。在这种情况下,他法米迪在 ATTR CA 治疗中发挥了重要作用,目前已被纳入国际指南 ( 3 ),该指南强调及时开始治疗的必要性,因为在疾病晚期阶段,疗效会降低 ( 4 )。在这方面,毫无疑问,及时诊断对于 ATTR CA 患者获得良好结果至关重要,而能够提供早期和准确诊断的可靠成像方式至关重要。与直觉相反,关于在早期诊断 ATTR CA 时应将注意力集中到何处的指导不应来自有关成像方式诊断准确性的文献,而应来自有关使用这些方式进行 tafamidis 后随访的最新数据。根据最近的报告,最近发表在《核医学杂志》( 5 ) 上的一项研究表明,治疗后心脏对 99m Tc-3,3-二膦酰基-1,2 丙二羧酸 ( 99m Tc-DPD ) SPECT 的摄取程度会降低。这项研究最有趣的发现是 99m Tc-DPD 摄取量有点出乎意料的下降。事实上,tafamidis 本质上是减少心肌内淀粉样纤维的沉积,而不是使其降解。与这一概念一致,以心脏 MRI 为特色的研究显示治疗后细胞外体积趋于稳定 ( 6 )。因此,可以想象,基于心脏 MRI 的细胞外体积计算反映了心肌内的淀粉样蛋白负担,而 99m Tc-DPD SPECT 反映的不是淀粉样蛋白的负担而是活性沉积的程度。这一概念与 99m Tc-DPD 不直接与淀粉样蛋白纤维结合而是与淀粉样蛋白内的微钙化结合的观察结果一致 (7)。与骨扫描一样,只有具有活性代谢的钙化才会吸收 99m Tc-DPD,同样的概念也适用于淀粉样蛋白成像。因此,如果我们的目标是尽早发现 ATTR CA,当淀粉样蛋白负担可能较小但活性沉积迅速时,99m Tc-DPD 可能是准确诊断的首选。在这方面,最有可能的 99m Tc-DPD 摄取模式可能不是弥漫性和轻微的,而是中度至密集的,并且局限于已知首先受到影响的左心室心肌区域——即基底区域,而不影响心尖区域。在这种情况下,很明显平面 99m Tc-DPD 成像不再足以进行早期诊断。事实上,而平面成像可能会漏掉小面积轻度至中度增加的 99m Tc-DPD 摄取,灵敏度
