信件和材料请求应发给Ricardo Mallarino。rmallarino@princeton.edu。作者贡献M.R.J.和R.M.构思了该项目并设计了实验。M.R.J. 进行了RNA-SEQ实验和大量RNA-Seq分析。 S.L. 在S.A.M.的帮助下,在条纹小鼠中进行了体外和体内基因组编辑。 和J.A.R.-P。 M.R.J. 和S.L. 对基因组编辑的动物进行了所有下游加工和分析。 下午和S.Y.S. 进行了数学建模。 C.F.G.-J. 在M.R.J.的支持下领导了SCRNA-SEQ分析。 和Q.N. M.R.J.,B.J.B. 和R.M. 进行原位杂交。 M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。M.R.J.进行了RNA-SEQ实验和大量RNA-Seq分析。S.L. 在S.A.M.的帮助下,在条纹小鼠中进行了体外和体内基因组编辑。 和J.A.R.-P。 M.R.J. 和S.L. 对基因组编辑的动物进行了所有下游加工和分析。 下午和S.Y.S. 进行了数学建模。 C.F.G.-J. 在M.R.J.的支持下领导了SCRNA-SEQ分析。 和Q.N. M.R.J.,B.J.B. 和R.M. 进行原位杂交。 M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。S.L.在S.A.M.的帮助下,在条纹小鼠中进行了体外和体内基因组编辑。和J.A.R.-P。 M.R.J.和S.L.对基因组编辑的动物进行了所有下游加工和分析。下午和S.Y.S. 进行了数学建模。 C.F.G.-J. 在M.R.J.的支持下领导了SCRNA-SEQ分析。 和Q.N. M.R.J.,B.J.B. 和R.M. 进行原位杂交。 M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。下午和S.Y.S.进行了数学建模。C.F.G.-J. 在M.R.J.的支持下领导了SCRNA-SEQ分析。 和Q.N. M.R.J.,B.J.B. 和R.M. 进行原位杂交。 M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。C.F.G.-J.在M.R.J.的支持下领导了SCRNA-SEQ分析。和Q.N.M.R.J.,B.J.B. 和R.M. 进行原位杂交。 M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。M.R.J.,B.J.B.和R.M.进行原位杂交。M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。M.R.J.,B.J.B.,S.A.M。和R.M.进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。M.R.J.和S.A.M.进行了黑素细胞细胞培养实验。J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。J.A.M.进行了进化分析。C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。C.Y.F.产生了横纹肌的MUS基因组和抬高注释。J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。J.G.和A.P.生成了永生的横纹纤维细胞。M.R.J. 和R.M. 用所有作者的输入写了手稿。M.R.J.和R.M.用所有作者的输入写了手稿。
在生物体发育、体内平衡和疾病过程中,蓬乱 (Dvl) 蛋白是 β-catenin 依赖性和 β-catenin 非依赖性 Wnt 通路中的关键信号因子。尽管它们对信号传递的重要性已在许多生物体中得到遗传证实,但我们对其机制的理解仍然有限。先前使用过表达蛋白的研究表明,Dvl 定位到依赖于其 DIX 结构域的大型点状细胞质结构中。为了研究 Dvl 在 Wnt 信号传导中的作用,我们对内源表达的 Dvl2 蛋白进行了基因组工程改造,该蛋白带有 mEos3.2 荧光蛋白标记,用于超分辨率成像。首先,我们通过多个独立的检测方法展示了融合蛋白在 β-catenin 依赖性和 β-catenin 非依赖性信号传导中的功能性和特异性。我们对 Dvl2 进行了活细胞成像,以分析超分子胞质 Dvl2_mEos3.2 凝聚物的动态形成。虽然 Dvl2_mEos3.2 的过度表达模拟了之前报道的大量大“点状”的形成,但在生理蛋白质水平上,超分子凝聚物的形成仅在大约每个细胞一个的细胞亚群中观察到。我们发现,在这些凝聚物中,Dvl2 与 Wnt 通路成分在 γ-微管蛋白和 CEP164 阳性中心体结构处共定位,并且 Dvl2 对这些凝聚物的定位是 Wnt 依赖性的。使用光激活定位显微镜 (PALM) 结合 DNA-PAINT 的 mEos3.2 单分子定位显微镜展示了这些凝聚物以细胞周期依赖的方式的组织和重复模式。我们的结果表明,Dvl2 在超分子凝聚物中的定位是动态协调的,并且取决于细胞状态和 Wnt 信号水平。我们的研究以单分子分辨率突出了 Wnt 通路中内源性和生理调节的生物分子凝聚物的形成。
经典 Wnt 信号转导在正常颅面发育中起着多种关键作用,而其失调已知与面部结构性先天缺陷有关。然而,Wnt 信号转导何时以及如何影响表型变异(包括与疾病相关的变异)仍不清楚。一种潜在机制是通过 Wnt 信号转导在早期面部信号中心额鼻外胚层区 (FEZ) 的模式形成及其随后对早期面部形态发生的调节中的作用。例如,Wnt 信号转导可能直接改变 FEZ 中音猬因子 (SHH) 结构域的形状和/或表达幅度。为了验证这个想法,我们使用了编码 Wnt3a 的复制型禽肉瘤逆转录病毒 (RCAS) 来调节其在面部间充质中的表达。然后,我们使用碘对比微计算机断层扫描成像和 3D 几何形态测量法 (3DGM) 量化并比较了处理过的胚胎和未处理过的胚胎在 FEZ 的 SHH 表达域的三维 (3D) 形状以及面部原基和大脑的形态方面的个体发生变化。我们发现,在头部发育的早期阶段,Wnt3a 表达的增加会在结构和信号分析水平之间产生相关的形状变化。此外,改变的 Wnt3a 激活会破坏前脑和其他神经管衍生物之间的整合。这些结果表明,Wnt 信号的激活通过影响前脑和 FEZ 中的 SHH 表达来影响面部形状,并强调了前脑和中面部形态发生之间的密切关系。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月30日。 https://doi.org/10.1101/2025.01.30.635771 doi:Biorxiv Preprint
尽管做出了巨大的努力,但针对WNT途径的治疗策略仍无法临床上市。Wnt-B catenin信号在正常组织稳态期间控制干细胞的普遍作用使可用治疗级分子的靶向毒性成为阻止其临床引入的重要局限性。Kaur等人(2021)在本期EMBO分子医学中的文章表明,使用Wnt信号抑制剂对Wnt上瘾的癌细胞进行处理会诱导BRCALENS的状态,从而导致对PARP抑制作用过敏。这是诱发合成致死性的一个新例子,可以为PARP抑制剂的新适应症铺平道路,或者可能有助于期待已久的临床引入针对WNT途径的治疗剂。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年4月6日发布。 https://doi.org/10.1101/2023.04.06.535895 doi:Biorxiv Preprint
哺乳动物肠道是最快的自我更新组织之一,由位于地下室底部的干细胞驱动。paneth细胞构成了利基微环境的主要元素,提供了各种生长因子来编排肠道干细胞稳态,例如Wnt3。不同的wnt配体可以选择性地促成β-catenin - 依赖(规范)或 - 独立(非规范)信号。在这里,我们报告说,形态发生1(DAAM1)及其副狗DAAM2不对称调节规范和非范围WNT(WNT/PCP)信号传导的Di-Shevell相关激活剂。daam1/2与Wnt抑制剂RNF43相互作用,而DAAM1/2双基因敲除刺激刺激可以防止Wnt受体的RNF43依赖性降解(FZD)。单细胞RNA测序分析表明,由于WNT/PCP信号有缺陷,DAAM1/2耗尽会损害Paneth细胞分化。一起,我们将DAAM1/2确定为一个意外的集线器分子,可以协调规范和非规范WNT,这对于指定足够数量的Paneth细胞是基本的。
fi g u r e 1 LICL诱导的牙周再生与M2极化有关。来自μCT,Azan染色和H&E染色的代表性图像表明,与PBS-隔间管理对照相比,LICL给药可显着诱导牙周组织修复。免疫组织化学染色证明了LICL给药诱导的Wnt/β-催化性信号的成功激活,这进一步导致了巨噬细胞(CD68 +细胞)的浸润,其中主要成分是精氨酸酶 + M2表型的精氨酸酶 + M2表型和INOS + M1表型显然抑制了1和2周的组合。AB,牙槽骨; D,牙本质; PDL,牙周韧带AB,牙槽骨; D,牙本质; PDL,牙周韧带
哺乳动物肠道是最快的自我更新组织之一,由位于地下室底部的干细胞驱动。paneth细胞构成了利基微环境的主要元素,提供了各种生长因子来编排肠道干细胞稳态,例如Wnt3。不同的wnt配体可以选择性地促成β-catenin - 依赖(规范)或 - 独立(非规范)信号。在这里,我们报告说,形态发生1(DAAM1)及其副狗DAAM2不对称调节规范和非范围WNT(WNT/PCP)信号传导的Di-Shevell相关激活剂。daam1/2与Wnt抑制剂RNF43相互作用,而DAAM1/2双基因敲除刺激刺激可以防止Wnt受体的RNF43依赖性降解(FZD)。单细胞RNA测序分析表明,由于WNT/PCP信号有缺陷,DAAM1/2耗尽会损害Paneth细胞分化。一起,我们将DAAM1/2确定为一个意外的集线器分子,可以协调规范和非规范WNT,这对于指定足够数量的Paneth细胞是基本的。